2. Trên các cạnh AB, BC, CD và D...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH
Thầy Hùng Olm
Manager VIP
30 tháng 6 2023

HD:

Tính diện tích các tam giác vuông: AMQ; MBN; NCP và PDQ

Lấy diện tích hình chữ nhật ABCD trừ đi tổng diện tích 4 tam giác vuông trên sẽ được diện tích hình tứ giác MNPQ

30 tháng 6 2023

cko e  đáp án

 

26 tháng 6 2023


 Ta thấy rằng \(\dfrac{BN}{BC}=\dfrac{AQ}{AD}\), mà \(BC=AD\) nên \(BN=AQ\), cũng có nghĩa ABNQ và CDQN là các hình chữ nhật. Ta kẻ MH và PK vuông góc với QN. Khi đó \(S_{MNPQ}=S_{MNQ}+S_{PNQ}\) 

\(=\dfrac{1}{2}\times PQ\times MH+\dfrac{1}{2}\times PQ\times PK\) 

\(=\dfrac{1}{2}\times PQ\times\left(MH+PK\right)\) 

\(=\dfrac{1}{2}\times AB\times BC\) (do \(PQ=AB\) và \(MH+PK=BC\))

\(=\dfrac{1}{2}\times S_{ABCD}\)

\(=\dfrac{1}{2}\times324=162\left(cm^2\right)\)

26 tháng 6 2023

Phải sửa lại như thế này nhé. Nãy mình nhầm.

24 tháng 6 2023
  • Diện tích tam giác ABM là 1/2 * AB * AM = 1/2 * AB * 1/3 AB = 1/6 * AB^2
  • Diện tích tam giác BCN là 1/2 * BC * BN = 1/2 * BC * 2/3 BC = 1/3 * BC^2
  • Diện tích tam giác CDP là 1/2 * CD * CP = 1/2 * CD * PD = 1/6 * CD^2
  • Diện tích tam giác DAQ là 1/2 * DA * DQ = 1/2 * DA * 1/3 DA = 1/6 * DA^2

Vậy tổng diện tích của 4 tam giác trên là:

1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2

 

  • Đường chéo AC chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * AC * AB/2 = 1/4 * AC * AB và 1/2 * AC * CD/2 = 1/4 * AC * CD
  • Đường chéo BD cũng chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * BD * BC/2 = 1/4 * BD * BC và 1/2 * BD * DA/2 = 1/4 * BD * DA

Do đó, ta có:

  • Diện tích tam giác EFG là 1/2 * EF * EG = 1/2 * (AC/2) * (BD/2) = 1/8 * AC * BD

Vậy diện tích hình MNPQ bằng:

2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD

Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:

Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2

` @ L I N H `

  • Diện tích tam giác ABM là 1/2 * AB * AM = 1/2 * AB * 1/3 AB = 1/6 * AB^2
  • Diện tích tam giác BCN là 1/2 * BC * BN = 1/2 * BC * 2/3 BC = 1/3 * BC^2
  • Diện tích tam giác CDP là 1/2 * CD * CP = 1/2 * CD * PD = 1/6 * CD^2
  • Diện tích tam giác DAQ là 1/2 * DA * DQ = 1/2 * DA * 1/3 DA = 1/6 * DA^2

Vậy tổng diện tích của 4 tam giác trên là:

1/6 * AB^2 + 1/3 * BC^2 + 1/6 * CD^2 + 1/6 * DA^2

  • Đường chéo AC chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * AC * AB/2 = 1/4 * AC * AB và 1/2 * AC * CD/2 = 1/4 * AC * CD
  • Đường chéo BD cũng chia hình chữ nhật ABCD thành hai tam giác có diện tích lần lượt là 1/2 * BD * BC/2 = 1/4 * BD * BC và 1/2 * BD * DA/2 = 1/4 * BD * DA

Do đó, ta có:

  • Diện tích tam giác EFG là 1/2 * EF * EG = 1/2 * (AC/2) * (BD/2) = 1/8 * AC * BD

Vậy diện tích hình MNPQ bằng:

2 * diện tích tam giác EFG = 2 * 1/8 * AC * BD = 1/4 * AB * CD

Từ đó, ta suy ra diện tích hình MNPQ là 1/4 diện tích hình chữ nhật ABCD:

Diện tích hình MNPQ = 1/4 * 324 cm^2 = 81 cm^2

19 tháng 3 2020

Cho hình chữ nhật ABCD có diện tích 216 cm2. Trên các cạnh AB, BC, CD và DA lần lượt lấy các điểm M, N, P, Q sao cho AM = MB, BN = 2/3 BC, CP = 2/3 CD và DQ = QA. Tính diện tích hình MNPQ?

19 tháng 3 2020

dựa vào gợi ý trên đẻ làm nhé

9 tháng 5 2020

tat ca cac canh bang nhau

11 tháng 6 2023

SQAM = SQDP = \(\dfrac{1}{6}\) SABCD = 48 cm2

SMBN = SPNC = \(\dfrac{1}{12}\) SABCD = 24 cm2

Diện tích hình MNPQ là:

288 - (48 + 24) x 2 = 144 (cm2)

Đáp số: 144 cm2

11 tháng 6 2023

Kẻ 2 đường chéo của MNPQ lần lượt là MP; NQ

Vì AM =2/3 AB => MB = 1/3AB

=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP

=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD

 

Vì AM =2/3 AB => MB = 1/3AB

=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP

=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD

Vì AM =2/3 AB => MB = 1/3AB

=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP

=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD

Vì BN = NC ; DQ = QA

=> Vì BC =AD=> BN = NC = DQ = QA

=> Kẻ đường chéo thứ 2 từ N sang Q = Chiều dài của hcn ABCD

=> SMNPQ = NQ*MP : 2 

Mà NQ = AB và MP = BC

=>  SMNPQ = AB* BC : 2

Mà AB*BC= 288

=>  SMNPQ = 288 : 2

 SMNPQ = 144 (cm2)

8 tháng 7 2023

loading...

AQ = AD - DQ = AD - \(\dfrac{3}{4}\)AD = \(\dfrac{1}{4}\)AD

SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\times\)\(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{4}\)AD = \(\dfrac{1}{16}\)SABCD

SBMN = \(\dfrac{1}{2}\)MB\(\times\)BN = \(\dfrac{1}{2}\)\(\times\) \(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{2}\)BC = \(\dfrac{1}{8}\)SABCD

SCMN  = \(\dfrac{1}{2}\)CN\(\times\)CP = \(\dfrac{1}{2}\times\dfrac{1}{2}\)BC \(\times\) \(\dfrac{2}{3}\)CD = \(\dfrac{1}{6}\)SABCD

DP = DC - CP = DC - \(\dfrac{2}{3}\)DC = \(\dfrac{1}{3}\)DC 

SDPQ = \(\dfrac{1}{2}\times\)\(\dfrac{1}{3}\times\)DC \(\times\) \(\dfrac{3}{4}\)AD = \(\dfrac{1}{8}\)SABCD

Diện tích của tứ giác MNPQ là:

288 \(\times\)( 1 - \(\dfrac{1}{16}\) - \(\dfrac{1}{8}-\dfrac{1}{6}-\dfrac{1}{8}\)) = 150 (cm2)

ĐS...

 

1 tháng 7 2023

240cm2 bạn ơi

 

1 tháng 7 2023

loading...

SAMQ   = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{3}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{12}\)SABCD 

BM       = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB

SBMN    = \(\dfrac{1}{2}\)BM\(\times\)BN = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)AB\(\times\)\(\dfrac{1}{2}\)BC = \(\dfrac{1}{6}\)SABCD

SCPN   = \(\dfrac{1}{2}\)CN \(\times\) CP = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{1}{2}\)BC\(\times\)\(\dfrac{1}{3}\)CD = \(\dfrac{1}{12}\)SABCD

DP      = CD - CP = CD - \(\dfrac{1}{3}\)CD = \(\dfrac{2}{3}\)CD

SDPQ  =  \(\dfrac{1}{2}\)DP\(\times\)DQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)CD \(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{6}\)SABCD

SMNPQ = SABCD - (SAMQ  + SBMN + SCPN + SDPQ)

Phân số chỉ diện tích của tứ giác MNPQ là:

 1 - \(\dfrac{1}{12}\) - \(\dfrac{1}{6}-\dfrac{1}{12}-\dfrac{1}{6}\) = \(\dfrac{1}{2}\) (SACBD)

Diện tích của tứ giác MNPQ là: 

360 \(\times\) \(\dfrac{1}{2}\) = 180(cm2)

Đáp số: 180 cm2

 

 

 

 

 

 

 

 

27 tháng 6 2023

A B C D M N P Q

\(S_{BMN}=\dfrac{1}{2}xBMxBN=\dfrac{1}{2}x\dfrac{AB}{4}x\dfrac{BC}{2}=\dfrac{1}{16}xS_{ABCD}\)

\(S_{CPN}=\dfrac{1}{2}xCNxCP=\dfrac{1}{2}x\dfrac{BC}{2}x\dfrac{CD}{2}=\dfrac{1}{8}xS_{ABCD}\)

\(S_{DPQ}=\dfrac{1}{2}xPDxDQ=\dfrac{1}{2}x\dfrac{CD}{2}x\dfrac{AD}{3}=\dfrac{1}{12}xS_{ABCD}\)

\(S_{AMQ}=\dfrac{1}{2}xAMxAQ=\dfrac{1}{2}x\dfrac{3xAB}{4}x\dfrac{2xAD}{3}=\dfrac{1}{4}xS_{ABCD}\)

\(\Rightarrow S_{MNPQ}=S_{ABCD}-\left(S_{BMN}+S_{CPN}+S_{DPQ}+S_{AMQ}\right)\)

Bạn tự thay số rồi tính nốt nhé