K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc ADH chung

=>ΔAHD đồng dạng với ΔBAD

16 tháng 5 2019

a) vì ABCD là hình chữ nhật 

nên AB // DC => góc ABH= góc BDC ( 2 góc so le trong )

Xét 2 tam giác AHB và BCD có 

 góc ABH = góc BDC 

góc AHB = góc BCD =900

=> 2 tam giác AHB và BCD đồng dạng (g.g)

b) Xét 2 tam giác ADH và BDA có 

góc ADH chung

góc AHD = góc BAD =900

nên 2 tam giác ADH và BDA là 2 tam giác đồng dạng (g.g) 

=> \(\frac{AD}{BD}=\frac{DH}{AD}\)

=> AD2=BD.DH

tam giác ABD vuông tại A 

=> \(BD^2=AD^2+AB^2\)( Py-ta-go)

=>BD =10cm

mà AD2=DH.BD (cmt)

=> 62=DH.10

=> DH =3.6cm

tam giác ADH vuông tại H nên AD2=AH2+DH2  ( py-ta-go)

<=>    62-3.62=AH2

AH=\(\sqrt{6^2-3.6^2}\)=4.8cm

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{ABH}=\widehat{BDC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔAHD vuông tại H và ΔBAD vuông tại A có

góc ADH chung

Do đó: ΔAHD\(\sim\)ΔBAD

11 tháng 3 2022

BẠN CÓ THỂ TRA THAY VÌ HỎI ĐC KO

 

11 tháng 3 2022

nhưng mà web này để hỏi mè =)))

a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có 

\(\widehat{BAH}=\widehat{DBC}\)

Do đó: ΔAHB\(\sim\)ΔBCD

b: Xét ΔADB vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

c: BD=10(cm)

=>DH=3,6cm

=>BH=6,4(cm)

=>AH=4,8cm

23 tháng 1 2022

sửa đề là đồng dạng bạn nhé 

a, Xét tam giác AHB và tam giác BCD có : 

^AHB = ^BCD = 900 ; ^ABH = ^BDC ( soletrong ) 

Vậy tam giác AHB ~ tam giác BCD ( g.g ) 

b, Xét tam giác ADH và tam giác DBC có : 

^ADH = ^DBC ( soletrong) ; ^AHD = ^BCD = 900 

Vậy tam giác ADH ~ tam giác DBC (g.g) 

\(\dfrac{DH}{BC}=\dfrac{AD}{DB}\Rightarrow AD.BC=DH.DB=AD^2\)

c, Theo định lí Pytago tam giác ABD vuông tại A

\(BD=\sqrt{AD^2+AB^2}=10cm\)

Ta có : \(DH=\dfrac{AD^2}{DB}=\dfrac{18}{5}cm\)

Lại có : tam giác AHB ~ tam giác BCD ( g.g ) (cmt)

\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow AH=\dfrac{AB.BC}{BD}=\dfrac{24}{5}cm\)

 

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

b: BD=căn 3^2+4^2=5cm

HB=AB^2/BD=3,2cm

c: AD là phân giác

=>ED/EB=AD/AB

mà AD/AB=AH/BH

nên ED/EB=AH/BH

a: Xét ΔDHA vuông tại H và ΔDAB vuông tại A có

góc HDA chung

=>ΔDHA đồng dạng với ΔDAB

=>DH/DA=DA/DB

=>DA^2=DH*DB

b: DB=căn 8^2+6^2=10cm

DH=6^2/10=3,6cm

20 tháng 5 2022

hình nx bạn