K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2021

N B A C D H M K

NV
11 tháng 7 2021

a. Dễ dàng chứng minh hai tam giác vuông ABE và BCF bằng nhau (c.g.c)

\(\Rightarrow\widehat{AEB}=\widehat{BFC}\)

Mà \(\widehat{AEB}+\widehat{AEC}=180^0\Rightarrow\widehat{BFC}+\widehat{AEC}=180^0\)

\(\Rightarrow\widehat{EHF}=360^0-\left(\widehat{C}+\widehat{BFC}+\widehat{AED}\right)=90^0\)

Hay \(AE\perp BF\)

b.

Áp dụng hệ thức lượng cho tam giác vuông ABE:

\(AB^2=AH.AE\Rightarrow AH=\dfrac{AB^2}{AE}\Rightarrow\dfrac{AH}{AE}=\dfrac{AB^2}{AE^2}=\dfrac{AB^2}{AB^2+BE^2}=\dfrac{AB^2}{AB^2+\left(\dfrac{AB}{2}\right)^2}=\dfrac{4}{5}\)

\(\dfrac{BH}{BF}=\dfrac{BH}{AE}=\dfrac{\dfrac{AB.BE}{AE}}{AE}=\dfrac{AB.BE}{AE^2}=\dfrac{AB.\dfrac{1}{2}AB}{AB^2+\left(\dfrac{1}{2}AB\right)^2}=\dfrac{2}{5}\)

c. Hai tam giác vuông ABH và DAK đồng dạng (\(\widehat{ADK}\) và \(\widehat{BAH}\) cùng phụ \(\widehat{DAK}\))

\(\Rightarrow\dfrac{AK}{AD}=\dfrac{BH}{AB}\Rightarrow AK=\dfrac{AD.BH}{AB}=BH\)

Mà \(tan\widehat{BAH}=\dfrac{BH}{AH}=\dfrac{BE}{AB}=\dfrac{1}{2}\Rightarrow BH=\dfrac{1}{2}AH\)

\(\Rightarrow AK=\dfrac{1}{2}AH\) hay K là trung điểm AH

NV
11 tháng 7 2021

undefined

31 tháng 12 2015

A B C D H K E F M

Hai tam giác AMC và DHE đồng dạng vì hai tam giac vuông và có góc A = góc D (hai góc nội tiếp cùng chắn 1 cung)

Tam giác DHE đồng dạng với tam giác AME vì hai tam giác vuông có hai góc đối đỉnh 

=> Tam giác AMC và AME đồng dạng, mà có chung cạnh AM nên hai tam giác bằng nhau => CM = EM

Tương tự cũng chứng minh đc AM = MF

=> ACFE là hình bình hành (có 2 đường chéo cắt nhau tại trung điểm mỗi đương)

Mà hai đường chéo vuông góc với nhau => ACFE là hình thoi

19 tháng 5 2020

Ta có: IJ−→=IA−→+AB−→−+BJ−→IJ→=IA→+AB→+BJ→
IJ−→=ID−→+DC−→−+CJ−→IJ→=ID→+DC→+CJ→
⇒IJ−→=12(AB−→−+DC−→−)⇒IJ→=12(AB→+DC→)
Xét:
HK−→−.IJ→=12(OK−→−−OH−→−).(AB−→−+DC−→−)=12(OK−→−.AB−→−+OK−→−.DC−→−−OH−→−.AB−→−−OH−→−.DC−→−)=12(OK−→−.AB−→−−OH−→−.DC−→−)=12[(OC−→−+CK−→−).(OB−→−−OA−→−)−(OA−→−+AH−→−).(OC−→−−OD−→−)]=12[(OB−→−−OA−→−−AH−→−).OC−→−−(CK−→−+OC−→−−OD−→−).OA−→−]=12[(HA−→−+AO−→−+OB−→−).OC−→−−(DO−→−+OC−→−+CK−→−).OA−→−]=12(HB−→−.OC−→−−DK−→−.OA−→−)=0⇔HK⊥IJ

9 tháng 2 2021

Giải thích các bước giải:

Gọi cạnh hình vuông là a

Vì M là trung điểm DC →DM=12a→AM=AD2+DM2=a52

Ta có : AK⊥KM,AD⊥DM→ADMK nội tiếp

→KAM^=KDM^=45o→ΔKMA vuông cân tại K→AK=KM=MA2=a522 

Do ADMK là tứ giác nội tiếp, theo định lý ptoleme 

Gọi giao của AC và BD là O, cạnh hình vuông là AB=a

=>AC=DB=a căn 2; \(OA=OB=OC=OD=\dfrac{a\sqrt{2}}{2}\)

góc ADM=góc AKM=90 độ

=>AKMD nội tiếp

=>góc AKM=góc KDM=45 độ

=>ΔKAM vuông cân tại K

ΔADM vuông tại D

=>\(AM^2=AD^2+DM^2=\dfrac{5}{4}a^2\)

ΔAKM vuôg cân tại K

=>\(AM^2=2\cdot AK^2\)

=>\(2AK^2=\dfrac{5}{4}a^2\)

=>AK^2=5/8a^2

ΔAOK vuông tại O nên  OK^2=AK^2+AO^2

=>OK=a/2căn 2

=>DK=DO+OK=3/4*a*căn 2

=>DK/DB=3/4

NV
20 tháng 1 2022

M là trung điểm AB \(\Rightarrow\overrightarrow{IM}=\dfrac{1}{2}\left(\overrightarrow{IA}+\overrightarrow{IB}\right)\)

\(\Rightarrow2\overrightarrow{IM}.\overrightarrow{DC}=\left(\overrightarrow{IA}+\overrightarrow{IB}\right).\left(\overrightarrow{DI}+\overrightarrow{IC}\right)=\overrightarrow{IA}.\overrightarrow{DI}+\overrightarrow{IB}.\overrightarrow{IC}+\overrightarrow{IA}.\overrightarrow{IC}+\overrightarrow{IB}.\overrightarrow{DI}\)

\(=\overrightarrow{IA}.\overrightarrow{IC}+\overrightarrow{IB}.\overrightarrow{DI}=-IA.IC+IB.DI\)

Mặt khác do 2 tam giác vuông DIC và AIB đồng dạng (\(\widehat{IAB}=\widehat{IDC}\) cùng chắn BC)

\(\Rightarrow\dfrac{IA}{ID}=\dfrac{IB}{IC}\Rightarrow IA.IC=IB.ID\Rightarrow-IA.IC+IB.ID=0\)

\(\Rightarrow2\overrightarrow{IM}.\overrightarrow{DC}=0\Rightarrow IM\perp DC\)

NV
20 tháng 1 2022

undefined