K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHAB vuông tại H và ΔBAE vuông tại B có

góc HAB chung

=>ΔHAB đồng dạng với ΔBAE

=>AH/AB=AB/AE

=>AB^2=AH*AE

b: Xet ΔHBE vuông tại H và ΔHAB vuông tại H có

góc HBE=góc HAB

Do đo: ΔHBE đồng dạngvới ΔHAB

=>HB/HA=HE/HB

=>HB^2=HE*HA

21 tháng 4 2022

xét tam giác ABC và tam giác HBA có

góc BAC=góc AHB=90 độ

góc B chung

suy ra tam giác ABC đồng dạng với tam giác HBA

suy ra AB phần HB = BC phần AB

a: BD=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

b: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc ABD chung

=>ΔABD đồng dạng với ΔHBA

=>BA/BH=BD/BA

=>BA^2=BH*BD

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{B}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: AB/HB=BC/BA

=>BH/AB=BC/BA(1)

hay \(AB^2=BH\cdot BC\)

Câu b đề sai rồi bạn

26 tháng 2 2022

Cảm ơn bạn nhiều. Giải mình câu C nhé. Cảm ơn bạn

 

a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABH}\) chung

Do đó: ΔABC\(\sim\)ΔHBA(g-g)

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)

hay \(AB^2=BH\cdot BC\)(đpcm)

b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có 

\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)

Do đó: ΔCHA\(\sim\)ΔAHB(g-g)

Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)

Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)

nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)

Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)

c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)

nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)

Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)

hay KI//AC(Định lí Ta lét đảo)

a: Xét ΔADH vuông tại H và ΔBDA vuông tại A có

\(\widehat{ADH}\) chung

Do đó: ΔADH\(\sim\)ΔBDA

b: Xét ΔAHB vuông tại H và ΔBHE vuông tại H có

\(\widehat{HAB}=\widehat{HBE}\)

Do đó: ΔAHB\(\sim\)ΔBHE

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)