K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
17 tháng 8 2017

\(SA=a\sqrt{2}.\tan45=a\sqrt{2}\)

\(S_{ABCD}=a^2\)

\(V_{S.ABCD}=\dfrac{1}{3}S.ABCD.SA=\dfrac{1}{3}a\sqrt{2}.a^2=\dfrac{a^3\sqrt{2}}{3}\)

khoảng cách từ B đến mặt phẳng(SCD )= k/c từ A đến mp(SCD)

áp dụng pitago cho tam giác SAD \(\Rightarrow\)SD=\(a\sqrt{3}\)

từ A hạ đường thẳngAH vuông góc vs SD

ta có: SA.AD=AH.SD \(\Rightarrow\)AH=\(\dfrac{a\sqrt{2}}{3}\)

vậy khoảng cách từ B đến mp SCD bằng AH

25 tháng 11 2016

Gọi \(I\) là tâm của đáy \(ABCD\) (giao điểm của \(AC\)\(BD\))

a) Vì đây là hính chóp đều nên có ngay \(SI\) là đường cao kẻ từ S

\(SI=\sqrt{SA^2-AI^2}=\sqrt{SA^2-\frac{AB^2}{2}}=a\sqrt{2}\)

\(V_{S.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{4a^3\sqrt{2}}{3}\)

b) Thấy ngay \(IA=IB=IC=ID=IS=a\sqrt{2}\)

suy ra tâm mc ngoại tiếp là \(I\)\(R=a\sqrt{2}\)

c) bạn dùng công thức sau để tính bán kính mặt cầu nội tiếp

\(r=\frac{3V_{S.ABCD}}{S_{ABCD}+4S_{SAB}}=\frac{\frac{4a^3\sqrt{2}}{3}}{4a^2+4.\frac{a^2\sqrt{3}}{2}}=\frac{4\sqrt{2}-2\sqrt{6}}{3}.a\)

 

AH
Akai Haruma
Giáo viên
13 tháng 10 2017

Câu 7:

Gọi $H$ là trung điểm của $AD$ suy ra \(SH\perp (ABCD)\)

Khi đó \(60^0=(SB,(ABCD))=(SB,BH)=\angle SBH\)

\(\Rightarrow \frac{SH}{HB}=\tan 60=\sqrt{3}\)

Sử dụng công thức Pitago: \(HB=\sqrt{AB^2+AH^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{\sqrt{5}}{2}a\)

\(\Rightarrow SH=BH\sqrt{3}=\frac{\sqrt{15}a}{2}\)

\(S_{ABM}=\frac{d(M,AB).AB}{2}=\frac{a^2}{2}\)

\(\Rightarrow V_{S.ABM}=\frac{1}{3},SH.S_{ABM}=\frac{1}{3}.\frac{\sqrt{15}a}{2}.\frac{a^2}{2}=\frac{\sqrt{15}a^3}{12}\)

AH
Akai Haruma
Giáo viên
13 tháng 10 2017

Câu 8:

Kẻ \(SH\perp AC\). Vì \((SAC)\perp (ABC)\Rightarrow SH\perp (ABC)\)

Khi đó , \(\angle (SB,(ABC))=\angle (SB,BH)=\angle SBH=60^0\)

\(\Rightarrow \frac{SH}{BH}=\tan 60=\sqrt{3}\)

Vì $SAC$ cân tại $S$ nên $H$ là trung điểm của $AC$

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{a^2-\frac{a^2}{4}}=\frac{\sqrt{3}a}{2}\)

\(\Rightarrow SH=\frac{3a}{2}\)

\(\Rightarrow V_{S.ABC}=\frac{1}{3}.SH.S_{ABC}=\frac{1}{3}.\frac{3a}{2}.\frac{BH.AC}{2}=\frac{1}{3}.\frac{3}{2}a.\frac{\sqrt{3}a^2}{4}=\frac{\sqrt{3}a^3}{8}\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Bài 1:

\(SH\perp (ABCD)\Rightarrow \angle (SC,(ABCD))=\angle (SC,HC)=\angle SCH\)

\(\Rightarrow \angle SCH=30^0\)

\(\Rightarrow \frac{SH}{HC}=\tan SCH=\frac{\sqrt{3}}{3}\Rightarrow SH=\frac{HC\sqrt{3}}{3}\)

Pitago: \(HC=\sqrt{HB^2+BC^2}=\frac{\sqrt{5}}{2}\)

Do đó \(SH=\frac{\sqrt{15}}{6}\)

\(\Rightarrow V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{15}}{6}.1^2=\frac{\sqrt{15}}{18}\)

AH
Akai Haruma
Giáo viên
1 tháng 10 2017

Bài 2:
$S$ cách đều $A.B,C$ nên \(SA=SB=SC\).

Xét chóp $S.ABC$ có độ dài các cạnh bên bằng nhau nên chân đường cao hạ từ đỉnh $S$ xuống đáy chính là tâm ngoại tiếp đáy.

Tam giác $ABC$ vuông tại $B$ nên chân đường cao (H) hạ từ $S$ xuống là trung điểm của $AC$.

Theo định lý Pitago: \(AB=\sqrt{AC^2-BC^2}=\sqrt{3}a\)

\(\Rightarrow S_{ABCD}=AB.AC=\sqrt{3}a^2\)

Có: \(60^0=\angle (SB,(ABCD))=\angle (SB,BH)=\angle SBH\)

\(\frac{SH}{BH}=\tan \angle SBH=\sqrt{3}\Rightarrow SH=BH\sqrt{3}\)

$H$ là trung điểm của $AC$ nên \(BH=AH=HC=\frac{1}{2}AC=a\Rightarrow SH=a\sqrt{3}\)

Vậy \(V_{S.ABCD}=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.\sqrt{3}a^2=a^3\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Gọi \(SH\) là đường cao của hình chóp

Từ \(H\) kẻ \(HK\perp AB\). Áp dụng định lý Thales cho tam giác $ABC$ suy ra \(\frac{HK}{BC}=\frac{AH}{AC}=\frac{3}{4}\Rightarrow HK=\frac{3}{4}a\)

Có: \(((SAB),(ABCD))=\angle HKS=60^0\Rightarrow \frac{HS}{HK}=\tan 60\Rightarrow SH=\frac{3\sqrt{3}}{4}a\)

Do đó mà \(V=\frac{1}{3}.SH.S_{ABCD}=\frac{\sqrt{3}}{4}a^3\)

20 tháng 5 2017

Khối đa diện

\(V_{ABSI}=V_{S.ABI}=\dfrac{1}{2}V_{S.ABCD}=\dfrac{a^3}{9}\)