K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2016

Gọi \(I\) là tâm của đáy \(ABCD\) (giao điểm của \(AC\)\(BD\))

a) Vì đây là hính chóp đều nên có ngay \(SI\) là đường cao kẻ từ S

\(SI=\sqrt{SA^2-AI^2}=\sqrt{SA^2-\frac{AB^2}{2}}=a\sqrt{2}\)

\(V_{S.ABCD}=\frac{1}{3}.SI.S_{ABCD}=\frac{4a^3\sqrt{2}}{3}\)

b) Thấy ngay \(IA=IB=IC=ID=IS=a\sqrt{2}\)

suy ra tâm mc ngoại tiếp là \(I\)\(R=a\sqrt{2}\)

c) bạn dùng công thức sau để tính bán kính mặt cầu nội tiếp

\(r=\frac{3V_{S.ABCD}}{S_{ABCD}+4S_{SAB}}=\frac{\frac{4a^3\sqrt{2}}{3}}{4a^2+4.\frac{a^2\sqrt{3}}{2}}=\frac{4\sqrt{2}-2\sqrt{6}}{3}.a\)

 

9 tháng 1 2019

Đáp án đúng : A

10 tháng 8 2019

NV
24 tháng 8 2021

\(AC=2a\sqrt{2}.\sqrt{2}=4a\Rightarrow OA=\dfrac{1}{2}AC=2a\)

\(\Rightarrow SO=\sqrt{SA^2-OA^2}=2a\sqrt{3}\)

\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{4a\sqrt{3}}{3}\)

\(\Rightarrow V=\dfrac{4}{3}\pi R^3=...\)

NV
24 tháng 8 2021

\(AC=2a\sqrt{2}.\sqrt{2}=4a\) \(\Rightarrow OA=\dfrac{1}{2}AC=2a\)

\(\widehat{SAO}=30^0\Rightarrow\left\{{}\begin{matrix}SO=AO.tan30^0=\dfrac{2a\sqrt{3}}{3}\\SA=\dfrac{AO}{cos30^0}=\dfrac{4a\sqrt{3}}{3}\end{matrix}\right.\)

\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{4a\sqrt{3}}{3}\)

\(V=\dfrac{4}{3}\pi R^3=\dfrac{256\pi a^3\sqrt{3}}{27}\)

NV
24 tháng 8 2021

Gọi M là trung điểm AB \(\Rightarrow\widehat{SMO}=45^0\)

\(OM=\dfrac{1}{2}AB=a\sqrt{2}\)

\(SO=OM.tan45^0=a\sqrt{2}\)

\(OA=\dfrac{1}{2}AC=2a\)

\(\Rightarrow SA=\sqrt{SO^2+OA^2}=a\sqrt{6}\)

\(\Rightarrow R=\dfrac{SA^2}{2SO}=\dfrac{3a\sqrt{2}}{2}\)

\(V=\dfrac{4}{3}\pi R^3=9\sqrt{2}\pi a^3\)