K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2017

Đáp án D.

 

18 tháng 6 2019

Chọn B.

Lời giải.

Xét hình chóp tứ giác đều S.ABCD, đặt AB =x, SO =h. Với O là tâm của hình vuông ABCD  ⇒ S O   ⊥ ( A B C D ) . Qua O kẻ đường thẳng OH vuông góc với SA với H ∈ SA

Ta có

Suy ra OH là đoạn vuông góc chung của SA và BD

Theo bài ra, ta có 

 

Tam giác SAO vuông tại O, có đường cao OH suy ra 

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Qua \(M\) dựng đường thẳng song song với \(AB\), cắt \(SB\) tại \(N\).

Qua \(N\) dựng đường thẳng song song với \(BC\), cắt \(SC\) tại \(P\).

Qua \(M\) dựng đường thẳng song song với \(AD\), cắt \(SD\) tại \(Q\).

Ta có:

\(\left. \begin{array}{l}MN\parallel AB\\AB \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MN\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MQ\parallel AD\\AD \subset \left( {ABCD} \right)\end{array} \right\} \Rightarrow MQ\parallel \left( {ABCD} \right)\)

\(\left. \begin{array}{l}MN\parallel \left( {ABCD} \right)\\MQ\parallel \left( {ABCD} \right)\\MN,MQ \subset \left( \alpha  \right)\end{array} \right\} \Rightarrow \left( {MNPQ} \right)\parallel \left( {ABCD} \right)\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{{MN}}{{AB}}} \right)^2}\)

Ta có: \({S_{ABC{\rm{D}}}} = A{B^2} = {10^2} = 100\)

\(MN\parallel AB \Rightarrow \frac{{MN}}{{AB}} = \frac{{SM}}{{SA}} = \frac{2}{3}\)

\( \Rightarrow \frac{{{S_{MNPQ}}}}{{{S_{ABC{\rm{D}}}}}} = {\left( {\frac{2}{3}} \right)^2} = \frac{4}{9} \Rightarrow {S_{MNPQ}} = \frac{4}{9}{S_{ABC{\rm{D}}}} = \frac{4}{9}.100 = \frac{{400}}{9}\)

Chọn A.

Chọn C

NV
17 tháng 4 2022

Gọi N là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}ON\perp AB\\SO\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SON\right)\)

Từ O kẻ \(OH\perp SN\) (H thuộc SN) \(\Rightarrow OH\perp\left(SAB\right)\Rightarrow OH=d\left(O;\left(SAB\right)\right)\)

\(ON=\dfrac{1}{2}AD=\dfrac{a}{2}\) ; \(SO=\dfrac{a\sqrt{2}}{2}\)

Hệ thức lượng: \(OH=\dfrac{SO.ON}{\sqrt{SO^2+ON^2}}=\dfrac{a\sqrt{6}}{6}\)

Lại có: M là trung điểm OD \(\Rightarrow OM=\dfrac{1}{2}OD\Rightarrow BM=\dfrac{3}{2}OB\)

\(\Rightarrow d\left(M;\left(SAB\right)\right)=\dfrac{3}{2}d\left(O;\left(SAB\right)\right)=\dfrac{3}{2}.\dfrac{a\sqrt{6}}{6}=\dfrac{a\sqrt{6}}{4}\)

NV
17 tháng 4 2022

undefined

NV
21 tháng 12 2022

Gọi O là tâm đáy \(\Rightarrow\) O là trung điểm BD và AC

Trong mp ((SAC), nối SO cắt AM tại I

\(\Rightarrow I=AM\cap\left(SBD\right)\)

Ta có M là trung điểm SC, O là trung điểm AC

\(\Rightarrow\) I là trọng tâm tam giác SAC

\(\Rightarrow\dfrac{IA}{AM}=\dfrac{2}{3}\Rightarrow\dfrac{MA}{IA}=\dfrac{3}{2}\)

b: SA vuông góc (ABCD)

=>SA vuông góc AC

=>ΔSAC vuông tại A

c: AC=căn a^2+a^2=a*căn 2

=>SC=căn SA^2+AC^2=a*căn 5

SD=căn SA^2+AD^2=2a

Vì DS^2+DC^2=SC^2

nên ΔSDC vuông tại D

Chọn A