K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 5 2019

a/ - Nếu \(AB//CD\Rightarrow\) qua S kẻ đường thẳng \(d//AB\Rightarrow d\) là giao tuyến của (SAB) và (SCD)

- Nếu AB cắt CD, gọi giao điểm của AB và CD là E thì đường thẳng \(SE\) là giao tuyến (SAB) và (SCD)

b/ Kéo dài HK cắt CD tại F \(\Rightarrow BF\) là giao tuyến của (BHK) và (ABCD)

c/ - Nếu AB//CD, kéo dài KH cắt d tại P, nối BP cắt SA tại Q \(\Rightarrow HQ\) là giao tuyến của (BHK) và (SAD)

- Nếu AB cắt CD, kéo dài KH cắt SE tại M, nối BM cắt SA tại N \(\Rightarrow HN\) là giao tuyến của (BHK) và (SAD)

c: Điểm O ở đâu vậy bạn

Lúc nãy mik viết đề sai. Đề này mới đúng

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

28 tháng 10 2023

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

c: \(N\in SB\subset\left(SAB\right);N\in\left(NCD\right)\)

=>\(N\in\left(SAB\right)\cap\left(NCD\right)\)

Xét (SAB) và (NCD) có

\(N\in\left(SAB\right)\cap\left(NCD\right)\)

AB//CD

Do đó: (SAB) giao (NCD)=ab, ab đi qua N và ab//CD//AB

NV
13 tháng 10 2020

\(\left(SAB\right)\cap\left(SCD\right)=SE\)

\(\left(SAC\right)\cap\left(SBD\right)=SF\)

Trong mp (ABCD), nối EF kéo dài lần lượt cắt AD và BC tại P và Q

\(\Rightarrow\left(SEF\right)\cap\left(SAD\right)=SP\)

\(\left(SEF\right)\cap\left(SBC\right)=SQ\)

NV
10 tháng 12 2021

a.

Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow OJ\) là đường trung bình tam giác SAC

\(\Rightarrow OJ||SA\)

Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)

\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)

b. O là trung điểm BD, I là trung điểm BC

\(\Rightarrow OI\) là đườngt rung bình tam giác BCD

\(\Rightarrow OI||CD\)

Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)

Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)

c. Ta có I là trung điểm BC, O là trung điểm AC

\(\Rightarrow M\) là trọng tâm tam giác ABC

\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\) 

\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)

Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)

\(\Rightarrow MK||\left(SBC\right)\)

NV
10 tháng 12 2021

undefined

22 tháng 9 2023

Tham khảo:

a) Gọi E là giao điểm của AB và CD

Vì AB thuộc mp (SAB) nên E là giao điểm của CD và (SAB)

b) Ta có: S thuộc hai mặt phẳng (SAB) và (SCD)

          E thuộc hai mặt phẳng (SAB) và (SCD)

Suy ra SE là giao tuyến của hai mặt phẳng (SAB) và (SCD)

c) Trong mp (SAB), gọi G là giao điểm của ME và SB

Mà SB thuộc (SBC), ME thuộc (MCD)

Do đó: G thuộc hai mặt phẳng (MCD) và (SBC)

          C thuộc hai mặt phẳng (MCD) và (SBC)

Suy ra CG là giao tuyến của hai mặt phẳng (MCD) và (SBC).