Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một đường thẳng muốn vuông góc với một mặt phẳng thì phải vuông góc với 2 đường thẳng chéo nhau chứ bạn? ở ba câu trên bạn mới chứng minh nó vuông với 1 đường mà
Chọn C
Từ giả thiết ta có AB=BC=CD=a
Kẻ AH ⊥ SC
Do AD là đường kính nên AC ⊥ CD và A C = A D 2 - C D 2 = a 3
Do SA ⊥ CD, AC ⊥ CD => CD ⊥ (SAC)=> CD ⊥ AH
=>AH ⊥ SC, AH ⊥ CD => AH ⊥ (SCD)
⇒ d A ( S C D ) = A H = A S . A C A S 2 + A C 2 = a 6 . a 3 3 a = a 2
Kéo dài AB cắt CD tại E. Dễ thấy B là trung điểm của AE.
⇒ d B , S C D d ( A , S C D ) = B E A E = 1 2 ⇒ d B , ( S C D ) = a 2 2
Gọi E là trung điểm AB, ta có đáy tạo bởi ba tam giác đều ADE, DEC, CEB.
Suy ra, góc ADE bằng 60o, góc EDB bằng 30o.
Suy ra, tam giác ADB và SDB là hai tam giác vuông tại D.
Suy ra, góc tạo bởi (SBD) và đáy ABCD là góc SDA với độ lớn 45o.
Suy ra, SA=a.
d(C,(SBD))=d(E,(SBD))=(1/2).d(A,(SBD))=(1/2).a\(\sqrt{2}\)/2=a\(\sqrt{2}\)/4.
Đáp án là C
Ta có:
theo giao tuyến SD.
Trong (SAD) kẻ AH ⊥ DS
Ta có
Theo bài
Vì tứ diện SABD có ba cạnh AS, AB, AD đôi một vuông góc nên
Do đó tam giác SAD vuông cân tại A có: