K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

2 tháng 4 2016

D H S M B N C K A P

Gọi H là trung điểm của AD. Do tam giác SAD là tam giác đều nên SH vuông góc với AD

Do mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) nên SH vuông góc với BP(1)

Xét hình vuông ABCD ta có :

\(\Delta CDH=\Delta BCP\Rightarrow CH\perp BP\) (2)

Từ (1) và (2) ta suy ra \(BP\perp\left(SHC\right)\)

Vì \(\begin{cases}MN||SC\\AN||CH\end{cases}\) \(\Rightarrow\left(AMN\right)||\left(SHC\right)\)

\(\Rightarrow BP\perp\left(AMN\right)\Rightarrow BP\perp AM\)

Kẻ vuông góc với mặt phẳng (ABCD), K thuộc vào mặt phẳng (ABCD), ta có :

\(V_{CMNP}=\frac{1}{3}MK.S_{CNP}\)

Vì \(MK=\frac{1}{2}SH=\frac{a\sqrt{3}}{4};S_{CNP}=\frac{1}{2}CN.CP=\frac{a^2}{8}\)

\(\Rightarrow V_{CMNP}=\frac{\sqrt{3}a^2}{96}\)

26 tháng 4 2018

Đáp án C.

28 tháng 8 2017

NV
22 tháng 6 2021

Lớp 12 thì chúng ta tọa độ hóa cho đơn giản

Gọi O là trung điểm AB \(\Rightarrow SO\perp\left(ABCD\right)\)

\(SO=\dfrac{a\sqrt{3}}{2}\) (trung tuyến tam giác đều)

\(AO=BO=\dfrac{a}{2}\)

Đặt hệ trục Oxyz vào chóp, với gốc O trùng O, tia Oz trùng tia OS, tia Ox trùng tia OB, tia Oy trùng tia ON (với N là trung điểm CD). Quy ước \(\dfrac{a}{2}\) là 1 đơn vị độ dài

Ta được tọa độ các điểm: \(S\left(0;0;\sqrt{3}\right)\) ; \(C\left(1;2;0\right)\) ; \(A\left(-1;0;0\right)\) ; \(D\left(-1;2;0\right)\)

Do M là trung điểm SD \(\Rightarrow M\left(-\dfrac{1}{2};1;\dfrac{\sqrt{3}}{2}\right)\)

\(\overrightarrow{AM}=\left(\dfrac{1}{2};1;\dfrac{\sqrt{3}}{2}\right)\) ; \(\overrightarrow{SC}=\left(1;2;-\sqrt{3}\right)\) ; \(\overrightarrow{AC}=\left(2;2;0\right)\)

\(d\left(AM;SC\right)=\dfrac{\left|\left[\overrightarrow{AM};\overrightarrow{SC}\right].\overrightarrow{AC}\right|}{\left|\left[\overrightarrow{AM};\overrightarrow{SC}\right]\right|}=\dfrac{2\sqrt{5}}{5}=\dfrac{a\sqrt{5}}{5}\)

3 tháng 7 2017

Đáp án A

6 tháng 11 2017

Chọn B.

Gọi Q là trung điểm CD, ta có PQ//SC//MN nên MN//(APQ)

=> d(MN, PQ)=d(MN, (APQ))=d(N,(APQ))

Vì  N D ⊥ H C N D ⊥ S H ⇒ N D ⊥ ( S H C )

⇒ N D ⊥ S C ⇒ N D ⊥ P Q

A Q → . N D → = ( A D → + D Q → ) . ( D C → + C N → ) = 0 → ⇒ A Q ⊥ N D

Vậy có

  N D ⊥ P Q N D ⊥ A Q ⇒ N D ⊥ A P Q   t ạ i   E ⇒ d ( M N , A P ) = N E

Mà có 

1 D E 2 = 1 D A 2 + 1 D Q 2 = 5 a 2 ⇒ D E = a 5

Và  D N = a 5 2 ⇒ E N = 3 a 5 10

Vậy  d ( M N , A P ) = 2 a 10

22 tháng 6 2018

Chọn D

13 tháng 6 2019