Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Theo dữ kiện đề bài cho, dễ dàng chứng minh được ΔACD vuông tại cân C và A C = A D 2 = a 2 .
C D ⊥ A C C D ⊥ S A ⇒ C D ⊥ S A C ⇒ S A C ⊥ S C D
Mà S A C ∩ S C D = S C , từ A kẻ A H ⊥ S C . Khi đó d A ; S C D = A H .
Tam giác SAC vuông tại
A: 1 A H 2 = 1 S A 2 + 1 A C 2 = 1 a 2 + 1 2 a 2 = 3 2 a 2 ⇒ d A ; S C D = A H = a 2 3
Mặt khác: A D ∩ S C D = D và M là trung điểm AD nên:
d M ; S C D d A ; S C D = M D A D = 1 2 ⇒ d M ; S C D = 1 2 d A ; S C D = a 6 6
Cách 1:
Gọi I là trung điểm của cạnh AD.
∆ A B C vuông cân tại B, ∆ I C D vuông cân tại I và có AB=IC=a nên A C = C D = a 2
Khi đó A C 2 + C D 2 = A D 2 nên ∆ A C D vuông cân tại C.
Trong (ABCD), dựng hình vuông ACDE. Trong ∆ S A E , kẻ A H ⊥ S E ( 1 )
Ta có
E D ⊥ S A E D ⊥ A E ⇒ E D ⊥ ( S A E ) ⇒ E D ⊥ A H ( 2 )
Từ (1) và (2) suy ra A H ⊥ ( S D E )
Vì A C / / E D nên
d A C , S D = d A C , S D E = d A ; S D E = A H
Trong ∆ S A E , 1 A H 2 = 1 S A 2 + 1 A E 2
⇔ A H = S A . A E S A 2 = A E 2 ⇔ A H = a . a . 2 a 2 + a 2 ) 2 = 6 a 3
Vậy d A C , S D = 6 a 3
Cách 2:
Dễ thấy D C ⊥ ( S A C ) . Trên mặt phẳng (ABCD)
dựng: A G / / C D , D G / / A C , D G ∩ A B = E
Dễ dàng chứng minh được: S.AED là tam diện vuông (1)
Tính được: AE=AD=2a.
Mà A C / / ( S D E )
⇒ d A C , S D = d A C , S D E = d A , S D E = A H
Với AH là đoạn thẳng dựng từ A vuông góc với mặt phẳng (ADE)
Ta có: 1 A H 2 = 1 S A 2 + 1 A E 2 + 1 A D 2
⇒ A H = 6 a 3
Cách 3:
Gắn hệ trục tọa độ Oxyz
Khi đó A ( 0 ; 0 ; 0 ) ; C ( a ; a ; 0 ) ;
D ( 0 ; 2 a ; 0 ) ; S ( 0 ; 0 ; a )
Do đó A C ⇀ = ( a ; a ; 0 ) ; S D ⇀ = ( 0 ; 2 a ; - a ) ; S A ⇀ = ( 0 ; 0 ; - a ) ;
và A C ⇀ ; S D ⇀ = ( - a ; a ; 2 a )
Ta có d A C , S D = A C ⇀ ; S D ⇀ . S A ⇀ A C ; ⇀ S D ⇀
= - a . 0 + a . 0 + 2 a . ( - a ) - a 2 + a 2 + 2 a 2 = 6 a 3
Chọn đáp án C.
Đáp án C.
Không mất tính tổng quát, giả sử a = 1
Xét hệ trục tọa độ Oxyz với
A 0 ; 0 ; 0 ; D 2 ; 0 ; 0 ;
B 0 ; 1 ; 0 ; S 0 ; 0 ; 5 .
Điểm C thỏa mãn
B C → = 1 2 A D → = 1 ; 0 ; 0
⇒ C 1 ; 1 ; 0 .
mp(SBC) có
n 1 → = S B → ; B C → = 0 ; 1 ; − 5 ; 1 ; 0 ; 0
= 0 ; − 5 ; − 1 .
mp(SCD) có
n 2 → = S D → ; C D → = 2 ; 0 ; − 5 ; 1 ; − 1 ; 0 = 5 ; 5 ; 2 .
Do đó côsin của góc tạo bởi hai mặt phẳng (SBC) và (SCD) bằng:
cos α = n 1 → . n 2 → n 1 . n 2 = 7 2 3 = 21 6 .
Đáp án A
Gọi M là trung điểm AD, khi đó CM = MA = MD nên tam giác ACD vuông tại C.