K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2019

9 tháng 7 2018

Đáp án A

2 tháng 4 2016

B C D A S E P M N

Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, BD vuông góc với mặt phẳng (SAC) nên BD vuông góc với MN.

Vì MN song song với mặt phẳng (SAC) nên 

\(d\left(MN,AC\right)=d\left(N,SAC\right)\)

                  \(=\frac{1}{2}d\left(B;\left(SAC\right)\right)=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\)

Vậy \(d\left(MN;AC\right)=\frac{a\sqrt{2}}{4}\)

21 tháng 12 2018

Chọn B.

Gọi H = DF  ∩ SA => H là trung điểm của ED. I = AC  ∩ BD => I là trung điểm BD

Vậy HI là đường trung bình của tam giác BED => HI//EB(1)

Ta có  (chóp tứ giác đều, hình chiếu của đỉnh S xuống đáy là I)

Gọi Q à trung điểm AB; dễ thấy NQ là đường trung bình của tam giác ABE => NQ//BE.

Gọi M là trung điểm BC; dễ thấy MQ//AC , 

Ta có 

Góc giữa hai đường thẳng MN và BD bằng 90 °

30 tháng 11 2019

5 tháng 4 2018

4 tháng 5 2019

Chọn C

Ta gọi E, F lần lượt là trung điểm của SC, AB

 

Ta có ME//NF(do cùng song song với BC. Nên tứ giác MENF là hình thang, và 

hay tứ giác MENF là hình thang vuông tại M, F

Ta có:  hay E là hình chiếu vuông góc của N lên (SAC)

 

Từ đó ta có được, góc giữa MN và (SAC) là góc giữa MN và CI

Suy ra, gọi  α là góc giữa MN và (SAC) thì 

25 tháng 3 2019

24 tháng 7 2017

Đáp án là C

Ta có