Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S lên mặt phẳng đáy trù...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2019

Đáp án C

Phương pháp giải:

Xác định hình chiếu của đỉnh, xác định góc để tìm chiều cao và áp dụng công thức thể tích

Lời giải:

Gọi O là tâm hình vuông  ABCD , H là trọng tâm tam giác ABD

Ta có 

ABCD là hình vuông cạnh a nên 

Tam giác HDO vuông tại  O, có 

Tam giác SHD vuông tại  H, có 

Vậy thể tích cần tính  là 

10 tháng 1 2019

21 tháng 3 2019

9 tháng 5 2018

Chọn đáp án A.

Gọi O là tâm của hình vuông và N là trung điểm của AB.

Khi đó G là giao điểm của ACDN. Tam giác SGD vuông tại G nên  S D G ^ nhọn

26 tháng 12 2019

Đáp án A

28 tháng 2 2017

Đáp án là A

11 tháng 9 2018

Đáp án A

Ta có A D = H A 2 + A D 2 = a 2 2 + a 2 = a 5 2 ⇒ S H = S D 2 - A D 2 = a  

Thể tích khối chóp đã cho là:  V = 1 3 S H . S A B C D = 1 3 a . a 2 = 1 3 a 3 .

1 tháng 2 2016

Áp dụng BĐT tam giác ta có:

a+b>c =>c-a<b =>c2-2ac+a2<b2

a+c>b =>b-c <a =>b2-2bc+c2<a2

b+c>a =>a-b<c =>a2-2ab+b2<c2

Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2

<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2

<=>-2(ab+bc+ca)<-(a2+b2+c2)

<=>2.(ab+bc+ca)<a2+b2+c2

 

11 tháng 4 2019

31 tháng 1 2019