Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(ABCI\) là hình vuông \(\Rightarrow\left\{{}\begin{matrix}CD=\sqrt{IC^2+ID^2}=a\sqrt{2}\\AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\end{matrix}\right.\)
\(\Rightarrow AC^2+CD^2=AD^2\Rightarrow\Delta ACD\) vuông cân tạiC
\(\Rightarrow OC\perp CD\) \(\Rightarrow CD\perp\left(SOC\right)\)
Từ O kẻ \(OH\perp SC\Rightarrow OH\perp\left(SCD\right)\) \(\Rightarrow OH\perp SD\)
\(\left\{{}\begin{matrix}BI\perp SO\\BI\perp OC\end{matrix}\right.\) \(\Rightarrow BI\perp\left(SOC\right)\Rightarrow BI\perp OH\)
\(SC=\sqrt{SO^2+OC^2}=a\sqrt{2}\) \(\Rightarrow SH=\frac{SO^2}{SC}=\frac{3a\sqrt{2}}{4}\)
Qua H kẻ đường thẳng song song CD cắt SD tại K
\(\frac{SH}{SC}=\frac{HK}{CD}\Rightarrow HK=\frac{SH.CD}{SC}=\frac{3a}{4}\)
Trên toa OI lấy điểm P sao cho \(OP=\frac{3a}{4}\)
\(\Rightarrow OHKP\) là hình chữ nhật \(\Rightarrow OH//KP\Rightarrow KP\) là đoạn vuông góc chung của \(BI\) và SD
\(\frac{1}{OH^2}=\frac{1}{SO^2}+\frac{1}{OC^2}\Rightarrow KP=OH=\frac{SO.OC}{\sqrt{SO^2+OC^2}}=\frac{a\sqrt{6}}{4}\)
Câu 2:
a/ Kẻ \(MH\perp AC\Rightarrow MH\perp\left(SAC\right)\)
\(\Rightarrow\widehat{MSH}\) là góc giữa SM và (SAC)
\(SM=\sqrt{SA^2+\left(\frac{AB}{2}\right)^2}=a\sqrt{10}\) ; \(MH=\frac{1}{2}\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
\(sin\widehat{MSH}=\frac{MH}{SM}=\frac{\sqrt{30}}{20}\Rightarrow\widehat{MSH}\approx15^053'\)
b/ \(\left\{{}\begin{matrix}MC\perp AB\\MC\perp SA\end{matrix}\right.\) \(\Rightarrow MC\perp\left(SAB\right)\)
\(\Rightarrow\widehat{SMA}\) là góc giữa \(\left(SMC\right)\) và \(\left(ABC\right)\)
\(tan\widehat{SMA}=\frac{SA}{AM}=3\Rightarrow\widehat{SMA}\approx71^033'\)
c/ Gọi N là trung điểm AC \(\Rightarrow NG=\frac{1}{3}NS\) (t/c trọng tâm)
\(\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{1}{3}d\left(N;\left(SAB\right)\right)\)
Từ N kẻ \(NK\perp AB\Rightarrow NK\perp\left(SAB\right)\)
\(\Rightarrow NK=d\left(N;\left(SAB\right)\right)\)
\(NK=\frac{1}{2}.\frac{2a\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\Rightarrow d\left(G;\left(SAB\right)\right)=\frac{a\sqrt{3}}{6}\)
- Gọi O là giao điểm của AC và BD.
- Kẻ: OI ⊥ AB, OH ⊥ SI.
+) Ta có:
+) Ta lại có:
- Do đó, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng góc
+) Khi đó: CD // AB nên CD // ( SAB).
Suy ra:
- Ta có:
+) Tam giác ABC có BC = BA và nên tam giác ABC đêù
- Trong tam giác OIA có:
a: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
=>(SBD) vuông góc (SAC)
b: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>BC vuông góc AK
mà AK vuông góc SB
nên AK vuông góc (SBC)
Hình bạn tự vẽ
Ta có \(\left\{{}\begin{matrix}SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp SI\) (1)
Do \(\Delta SAD\) đều \(\Rightarrow SI\perp AD\) (2)
(1), (2) \(\Rightarrow SI\perp\left(ABCD\right)\)
Dễ dàng nhận ra ABKD là hình vuông
\(BD=\sqrt{AB^2+AD^2}=a\sqrt{2}\) ; \(BC=\sqrt{BK^2+CK^2}=a\sqrt{2}\)
\(\Rightarrow BD^2+BC^2=4a^2=CD^2\)
\(\Rightarrow\Delta DBC\) vuông cân tại B \(\Rightarrow CB\perp BD\)
Kéo dài IH và CB cắt nhau tại K
\(IH//BD\) (đường trung bình) \(\Rightarrow BC\perp IH\Rightarrow CK\perp\left(SHI\right)\)
\(\Rightarrow\widehat{CSK}\) là góc giữa SC và (SHI)
\(IC=\sqrt{ID^2+CD^2}=\sqrt{\left(\frac{AD}{2}\right)^2+CD^2}=\frac{a\sqrt{17}}{2}\)
\(SI=\frac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)
\(\Rightarrow SC=\sqrt{SI^2+IC^2}=a\sqrt{5}\)
\(BK=BH.sin\widehat{KHB}=\frac{AB}{2}.\frac{IA}{IH}=\frac{AB}{2}.\frac{AB}{2\sqrt{AH^2+IA^2}}=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow CK=BC+BK=a\sqrt{2}+\frac{a\sqrt{2}}{4}=\frac{5a\sqrt{2}}{4}\)
\(\Rightarrow sin\widehat{CSK}=\frac{CK}{SC}=\frac{\sqrt{10}}{4}\Rightarrow\widehat{CSK}\approx52^014'\)