K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

Mặt cầu, mặt nón tròn xoay và mặt trụ tròn xoay

20 tháng 5 2016

S o B H A D G d H' C K

Câu a bạn tự tính nhé!

Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\) 

Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.

Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\) 

Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)

 

 

22 tháng 11 2016

1, Đổi chỗ 3 viên ở 3 đỉnh tam giác: viên dưới cùng lên đỉnh trên cùng, 2 viên ngoài cùng ở 2 bên đảo xuốn đáy

2, 8-6+2=4; 12-5+8=15; 13-10+15=18. x=15

3,

*) \(5^3+5=130;3^3+3=30;2^3+2=10;1^3+1=2\)

*) 2+3=8 hay 2.(2+3)-2=8

4+5=32 hay 4.(4+5)-4=32

5+8=60 hay 5.(5+8)-5=60

6+7=72 hay 6.(6+7)-6=72

7+8= 7.(7+8)-7=98

 

23 tháng 11 2016

HACK

29 tháng 3 2017

Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít

29 tháng 3 2017

Sau khi bán nửa lít thì còn lại số lít là :

18 : \(\dfrac{1}{2}\) = 36 lít

Vì bán 1 nửa tương ứng với 36 lít , vậy :

36 . 2 = 72 lít

Đ/s : 72 lít

GV
25 tháng 4 2017

a) (H) có các đường tiệm cận là:

- Tiệm cận ngang y = -1

- Tiệm cận đứng x = -1

hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).

Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)

b) Hình (H') có phương trình là:

\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)

Hình đối xứng với (H') qua gốc tọa độ có phương trình là:

\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)

a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

b: Để B là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{1;0\right\}\)(do x là số nguyên)

c: Để C là số nguyên thì \(3x-3+10⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

d: Để D là số nguyên thì \(4x-1⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{4;2;14;-8\right\}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2017

Lời giải:

Gọi độ dài cạnh đáy là $x$

Hạ đường cao $SH$ của hình chóp. Do đây là hình chóp tứ giác đều nên $H$ là tâm của hình vuông $ABCD$

Từ $H$ kẻ \(HE\perp AB\)

\(\Rightarrow \angle ((SAB),(ABCD))=\angle (HE,SE)=\angle SEH=30^0\)

\(\Rightarrow \frac{HE}{SE}=\cos SEH=\cos 30=\frac{\sqrt{3}}{2}\)

Mà \(HE\parallel AD\Rightarrow \frac{HE}{AD}=\frac{HB}{BD}=\frac{1}{2}\Leftrightarrow HE=\frac{x}{2}\)

Do đó: \(SE=\frac{x}{\sqrt{3}}\)

Diện tích mặt bên: \(S_{SAB}=\frac{SE.AB}{2}=\frac{\sqrt{3}a^2}{6}\)

\(\Leftrightarrow \frac{x^2}{2\sqrt{3}}=\frac{\sqrt{3}a^2}{6}\Leftrightarrow x^2=a^2\Leftrightarrow x=a\)

\(\frac{SH}{HE}=\tan SEH=\tan 30=\frac{\sqrt{3}}{3}\Rightarrow SH=\frac{\sqrt{3}}{3}.\frac{a}{2}=\frac{\sqrt{3}}{6}a\)

Vậy: \(V=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{3}a}{6}.a^2=\frac{\sqrt{3}a^3}{18}\)

12 tháng 3 2022

tui ne2