K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot...
Đọc tiếp

Cho hình chóp tứ giác $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và $SA$ vuông góc với mặt phẳng $(ABCD)$. Gọi $O$ là trung điểm của cạnh $SC$, $M$, $N$ lần lượt là trung điểm của các cạnh $SB$, $SD$. Gọi $P$ là điểm nằm trên đường thẳng $AN$ sao cho $OP \perp AM$. Chứng minh rằng: $$\frac{PM}{PN} = \frac{1}{3}.$$ **Lời giải:** Áp dụng định lí Menelaus lần lượt trên tam giác $ABC$ và $ACD$, ta có: $$\frac{SM}{SB}\cdot \frac{BO}{OC}\cdot \frac{CQ}{QA} = 1,$$ $$\frac{SD}{SC}\cdot \frac{CO}{OB}\cdot \frac{BP}{PA} = 1,$$ trong đó $Q$ là giao điểm của $SN$ và $OM$. Do đó, ta có: $$\frac{SM}{SB} = \frac{SC}{SO},$$ $$\frac{SD}{SC} = \frac{SB}{SO}.$$ Tiếp theo, ta chứng minh $AP \parallel DC$. Ta có $\angle BSA = 90^{\circ}$ và $\angle BSC = \angle DSC$ nên tam giác $BSD$ vuông cân tại $S$. Do đó $SM = NS$. Khi đó, ta có: $$\frac{SM}{SB} = \frac{NS}{NB} = \frac{1}{2}.$$ Từ đó ta suy ra $\frac{SC}{SO} = \frac{1}{2}$, hay $SO = 2SC$. Áp dụng định lí Pythagore trong tam giác $SBO$ ta có: $SB = \sqrt{2}a$. Mặt khác, ta có $OM = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $BM = \frac{\sqrt{2}}{2}a$ và $BO = \frac{\sqrt{6}}{2}a$. Áp dụng định lí Pythagore trong tam giác $SDO$ ta có: $SD = \sqrt{6}a$. Mặt khác, ta có $ON = \frac{1}{2}a$ và $OS = \frac{2}{3}SC = \frac{1}{3}a$, suy ra $DN = \frac{\sqrt{2}}{2}a$ và $DO = \frac{\sqrt{6}}{2}a$. Ta có $AP \parallel DC$ khi và chỉ khi: $$\frac{BP}{PA} = \frac{AD}{DC} = \sqrt{2} - 1,$$ trong đó ta đã sử dụng tính chất hình học của hình vuông. Từ định lí Menelaus cho tam giác $ACD$, ta có: $$\frac{AD}{CD}\cdot \frac{CP}{PA}\cdot \frac{NB}{ND} = 1.$$ Do đó, ta có: $$\frac{BP}{PA} = \frac{AD}{CD}\cdot \frac{ND}{NB} = (\sqrt{2} - 1)\cdot \frac{\frac{1}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{2 - \sqrt{2}}{2}.$$ Ta cũng có thể tính được $\frac{PM}{PN}$ bằng cách sử dụng định lí Menelaus cho tam giác $ANB$: $$\frac{AP}{PB}\cdot \frac{MB}{MN}\cdot \frac{SN}{SA} = 1,$$ từ đó ta có: $$\frac{PM}{PN} = \frac{SN}{SM}\cdot \frac{PB}{PA}\cdot \frac{MB}{NB} = \frac{2}{1}\cdot \frac{2 - \sqrt{2}}{2}\cdot \frac{\frac{\sqrt{2}}{2}a}{\frac{\sqrt{2}}{2}a} = \frac{1}{3}.$$ Vậy $\frac{PM}{PN} = \frac{1}{3}$, ta đã chứng minh được bài toán.

0
2 tháng 4 2018

NV
23 tháng 1

À, tưởng dài mà thực ra cũng dễ thôi, vì toàn điểm đặc biệt cả.

Gọi O là tâm đáy \(\Rightarrow I\) là giao AN và SO

\(\Rightarrow I\) là trọng tâm SAC \(\Rightarrow\dfrac{SI}{SO}=\dfrac{2}{3}\)

Gọi E là giao điểm CM và BD, trong mp (SCM) nối MN cắt SE tại J

E là trọng tâm ABC \(\Rightarrow\dfrac{BE}{BO}=\dfrac{2}{3}\)

Menelaus tam giác BOI:

\(\dfrac{BE}{EO}.\dfrac{OS}{SI}.\dfrac{IJ}{JB}=1\Rightarrow2.\dfrac{3}{2}.\dfrac{IJ}{JB}=1\Rightarrow JB=3IJ\)

\(\Rightarrow IB-IJ=3IJ\Rightarrow\dfrac{IB}{IJ}=4\)

NV
23 tháng 1

loading...

2 tháng 1 2022

Thưa chị, em không vẽ hình vì sợ duyệt, với lại em lớp 9 nên chỉ làm bài này dựa vào chút kiến thức lớp 8 thôi ạ.

a) Hình bình hành ABCD có O là tâm nên O là trung điểm của đường chéo BD.

Xét \(\Delta BDS\)có I và O lần lượt là trung điểm của BS, BD

\(\Rightarrow\)IO là đường trung bình của \(\Delta BDS\)\(\Rightarrow\)IO//DS

Mà \(DS\in mp\left(SAD\right)\)nên IO//\(mp\left(SAD\right)\)(đpcm)

Em không làm được câu b ạ, em xin lỗi chị.

Chọn B