K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

- Ta có: S là điểm chung của hai mặt phẳng (SAD) và (SBC) 

Từ S kẻ Sx sao cho Sx // AD // BC. Vậy Sx là giao tuyến của hai mặt phẳng (SAD) và (SBC).

- Ta có: M, P là trung điểm của SA, SD. Suy ra MP // AD // BC 

Có: N là điểm chung của hai mặt phẳng (MNP) và (ABCD)

Từ N kẻ NQ  sao cho NQ // AD.

Vậy NQ là giao tuyến của hai mặt phẳng (MNP) và (ABCD). 

NV
22 tháng 12 2022

Qua S kẻ đường thẳng d song song AD (và BC)

Do \(\left\{{}\begin{matrix}S\in\left(SAD\right)\cap\left(SBC\right)\\AD||BC\\AD\in\left(SAD\right)\\BC\in\left(SBC\right)\end{matrix}\right.\) \(\Rightarrow\) giao tuyến của (SAD) và (SBC) là đường thẳng qua S và song song AD, BC

\(\Rightarrow d=\left(SAD\right)\cap\left(SBC\right)\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Gọi P là giao điểm của CN và AB

Ta có \(P \in CN\)suy ra \(P \in (CMN)\)

Suy ra P là giao điểm của mặt phẳng (CMN) với đường thẳng AB

Gọi E là giao điểm của MB và SB

Ta có \(E \in MP\)suy ra\(E \in (CMN)\)

Suy ra E là giao điểm của mặt phẳng (CMN) với đường thẳng SB

b) Vì M và E cùng thuộc (CMN) và (SAB) nên ME  là giao tuyến của hai mặt phẳng (CMN) và (SAB)

Vì E và C cùng thuộc (CMN) và (SBC) nên EC là giao tuyến của hai mặt phẳng (CMN) và (SBC)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

a) Ta có: AM cắt CD tại E nên E thuộc (AMN) và (SCD)

Mà N thuộc (AMN) và (SCD)

Do đó: EN là giao tuyến của hai mặt phẳng cần tìm. 

b) Ta có: En cắt SC tại F nên F thuộc (AMN) và (SBC) 

Mà M thuộc (AMN) và (SBC) 

Do đó: FM là giao tuyến của hai mặt phẳng cần tìm. 

25 tháng 5 2017

Hai mặt phẳng (SAD) và (SBC) có điểm chung S và lần lượt chứa hai đường thẳng song song AD và BC nên giao tuyến của chúng là đường thẳng d đi qua S và song song với AD và BC

a: \(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

=>(SAD) giao (SBC)=xy, xy đi qua S, xy//AD//BC

b: Chọn mp(SBC) có chứa BC

\(P\in SC\subset\left(SBC\right)\)

\(P\in\left(MNP\right)\)

=>\(P\in\left(MNP\right)\cap\left(SBC\right)\)

mà NP//SB

nên (MNP) giao (SBC)=xy, xy đi qua P và xy//NP//SB

=>(MNP) giao (SBC)=PN

Gọi I là giao của PN với BC

=>I trùng với N

13 tháng 8 2023

mình xin hình vẽ

NV
4 tháng 1 2022

Áp dụng định lý Talet trong tam giác KAD:

\(\dfrac{KB}{KA}=\dfrac{KC}{KD}=\dfrac{BC}{AD}=\dfrac{1}{2}\)

\(\Rightarrow B,C\) lần lượt là trung điểm AK và DK

Mà E, F là trung điểm SA, SD

\(\Rightarrow\) M, N lần lượt là trọng tâm các tam giác SAK và SDK

\(\Rightarrow\dfrac{SM}{SB}=\dfrac{2}{3}\) ; \(\dfrac{SN}{SC}=\dfrac{2}{3}\)

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{SM}{SB}=\dfrac{SN}{SC}=\dfrac{2}{3}\) (Talet)

\(\Rightarrow MN=\dfrac{2}{3}BC=\dfrac{2}{3}.\dfrac{1}{2}AD=\dfrac{1}{3}AD\)

Lại có EF là đường trung bình tam giác SAD \(\Rightarrow EF=\dfrac{1}{2}AD\)

\(\Rightarrow\dfrac{S_{KMN}}{S_{KEF}}=\dfrac{MN}{EF}=\dfrac{\dfrac{1}{3}AD}{\dfrac{1}{2}AD}=\dfrac{2}{3}\)

NV
4 tháng 1 2022

undefined

24 tháng 11 2023

1: Gọi giao điểm của AC và BD là O trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên (SAC) giao (SBD)=SO

Xét ΔSDC có

P,N lần lượt là trung điểm của DS,DC

=>PN là đường trung bình của ΔSDC

=>PN//SC

PN//SC

SC\(\subset\)(SBC)

PN không nằm trong mp(SBC)

Do đó: PN//(SBC)