K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

Gọi E là giao điểm của AB và CD

\(E\in AB\subset\left(SAB\right);E\in CD\subset\left(SCD\right)\)

Do đó: \(E\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SDC\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SE\)

22 tháng 9 2023

Tham khảo:

a) Gọi E là giao điểm của AB và CD

Vì AB thuộc mp (SAB) nên E là giao điểm của CD và (SAB)

b) Ta có: S thuộc hai mặt phẳng (SAB) và (SCD)

          E thuộc hai mặt phẳng (SAB) và (SCD)

Suy ra SE là giao tuyến của hai mặt phẳng (SAB) và (SCD)

c) Trong mp (SAB), gọi G là giao điểm của ME và SB

Mà SB thuộc (SBC), ME thuộc (MCD)

Do đó: G thuộc hai mặt phẳng (MCD) và (SBC)

          C thuộc hai mặt phẳng (MCD) và (SBC)

Suy ra CG là giao tuyến của hai mặt phẳng (MCD) và (SBC).

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

a) Gọi giao điểm của AD và BC là K.

Ta có: SK cùng thuộc mp(SAD) và (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.

c) Gọi O là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

- Ta có: AB thuộc (SAB)

            CD thuộc (SCD)

Mà AB // CD, S là điểm chung của hai mặt phẳng (SAB) và (SCD).

Từ S kẻ Sx sao cho Sx // AB // CD. 

Vậy Sx là giao tuyến của hai mặt phẳng (SAB) và (SCD).

- Tương tự ta có: Sy là giao tuyến của hai mặt phẳng (SAD) và (SBC) sao cho Sy // AD // BC. 

11 tháng 12 2023

loading...  loading...  loading...  loading...  

11 tháng 12 2023

Tối nay anh giúp em 20 câu toán với nha anh em đang cần gấp ạ thanks anh rất nhiều luôn ạ

NV
25 tháng 12 2020

Kéo dài AB và CD cắt nhau tại E

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

Qua M kẻ đường thẳng d song song CD lần lượt cắt AC và AD tại F và G

Trong mp (SAC), qua F kẻ đường thẳng song song SA cắt SC tại P

Trong mp (SAD), qua G kẻ đường thẳng song song SA cắt SD tại Q

\(\Rightarrow\) Hình thang MPQG là thiết diện của (P) và chóp

2:

a: AD và BC là hai đường thẳng song song

b: \(S\in\left(SAB\right)\)

\(S\in\left(SCD\right)\)

Do đó:S là giao điểm của hai mặt phẳng (SAB) và (SCD)

c: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó; \(\left(SAB\right)\cap\left(SCD\right)=mn\), mn đi qua S và mn//AB//CD

 

a: (SBD) giao (ABCD)=BD

SO vuông góc BD

AO vuông góc BD

=>((SBD);(ABCD))=góc SOA

b: (SCD) giao (SAD)=SD

Kẻ AH vuông góc SC

ΔSDC vuông tại D

Kẻ DK vuông góc SC
Qua H kẻ HF//DK

=>Góc cần tìm là góc AHF

28 tháng 10 2023

a: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

c: \(N\in SB\subset\left(SAB\right);N\in\left(NCD\right)\)

=>\(N\in\left(SAB\right)\cap\left(NCD\right)\)

Xét (SAB) và (NCD) có

\(N\in\left(SAB\right)\cap\left(NCD\right)\)

AB//CD

Do đó: (SAB) giao (NCD)=ab, ab đi qua N và ab//CD//AB

a: Qua S kẻ đường Sx song song SD

=>Sx vuông góc SA

SC vuông góc CD

=>SC vuông góc Sx

((SAB);(SCD))=góc ASC

b: (SBD) căt (SAB)=SB

Kẻ DA vuông góc AB

mà DA vuông góc SA

nên DA vuông góc (SAB)

=>DA vuông góc SB

Kẻ AK vuông góc SB

=>((SBD);(SAB))=góc AKD

c: (SBC) giao (SCD)=SC
Kẻ BH vuông góc SC

Qua H kẻ HF//CD

=>HF vuông góc SC

=>((SBC);(SCD))=góc BHF