Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi A’ là giao điểm của AH và BC. Ta cần chứng minh ba điểm S, K, A’ thẳng hàng.
Vì H là trực tâm của tam giác ABC nên AA′ ⊥ BC. Mặt khác theo giả thiết ta có: SA ⊥ (ABC), do đó SA ⊥ BC.
Từ đó ta suy ra BC ⊥ (SAA′) và BC ⊥ SA′. Vậy SA’ là đường cao của tam giác SBC nên SA’ là phải đi qua trực tâm K. Vậy ba đường thẳng AH, SK và BC đồng quy.
b) Vì K là trực tâm của tam giác SBC nên BK ⊥ SC (1)
Mặt khác ta có BH ⊥ AC vì H là trực tâm của tam giác ABC và BH ⊥ SA vì SA ⊥ (ABC).
Do đó BH ⊥ (ABC) nên BH ⊥ SC (2).
Từ (1) và (2) ta suy ra SC ⊥ (BHK). Vì mặt phẳng (SAC) chứa SC mà SC ⊥ (BHK) nên ta có (SAC) ⊥ (BHK).
c) Ta có
Mặt phẳng (BHK) chứa HK mà HK ⊥ (SBC) nên (BHK) ⊥ (SBC).
a) \(SB^2=AS^2+AB^2=AS^2+AC^2=SC^2\Rightarrow SB=SC\) => \(\Delta\)SBC cân tại S
Do đó: AO,SH cắt nhau tại trung điểm I của cạnh BC
Xét \(\Delta\)SBC: trực tâm H, đường cao SI => \(IH.IS=IB.IC\)(1)
Tương tự: \(IB.IC=IO.IA\)(2)
Từ (1);(2) => \(IH.IS=IO.IA\)=> \(\Delta\)IHO ~ \(\Delta\)IAS => ^IHO = ^IAS = 900 => OH vuông góc IS (3)
Ta có: BC vuông góc với AI,AS => BC vuông góc với (SAI) => BC vuông góc OH (4)
Từ (3);(4) => OH vuông góc (SBC).
b) Xét tam giác SKI: IO vuông góc SK tại A, KO vuông góc SI tại H (cmt) => O là trực tâm tam giác SKI
Vậy SO vuông góc IK.
Đáp án D