Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Trên cạnh SB, SC lần lượt lấy các điểm M, N thỏa mãn SM = SN = 1.
Ta có AM = 1, AN = 2 , MN = 3
=> tam giác AMN vuông tại A
Hình chóp S.AMN có SA = SM = SN = 1.
=> hình chiếu của S trên (AMN) là tâm I của đường tròn ngoại tiếp tam giác AMN, ta có I là trung điểm của MN
Trong ∆ SIM,
Ta có
Chọn D.
Gọi là hình chiếu vuông góc của A lên mp (SBC) . Gọi I, K lần lượt là hình chiếu vuông góc của H lên SB và SC.
Ta có
Chứng minh tương tự ta được SC ⊥ SK
∆ SAI = ∆ SAK (cạnh huyền – góc nhọn) => SI = SK
Khi đó ∆ SHI = ∆ SHK (cạnh huyền – cạnh góc vuông) => HI = HK. Do đó SH là đường phan giác trong của BSC, nên HSI = 30 °
Trong tam giác vuông SAI,
Trong tam giác vuông HIS,
Khi đó
Vậy
Cách 2: Sử dụng công thức tính nhanh
Nếu khối chóp S.ABC có thì
Áp dụng: Với
Cách 3:
Trên các cạnh SB, SC lần lượt lấy các điểm B’, C’ sao cho SB' = SC' = SA = a 2
Khi đó chóp S.AB'C' là khối chóp tam giác đều. Đồng thời ASB = BSC = CSA = 60 ° nên AB' = B'C' = AC' = SA = a 2
Gọi H là hình chiếu của S lên mặt phẳng (AB'C'). Khi đó dễ dàng chứng minh được các tam giác SHA, SHB', SHC' bằng nhau. Suy ra HA, HB', HC' bằng nhau. Hay H là tâm đường tròn ngoại tiếp tam giác AB'C'. Vì tam giác AB'C' đều nên H cũng là trọng tâm tam giác AB'C'.
Ta có
Ta có
Chọn đáp án B.
Ta có: S A ⊥ S B S A ⊥ S C ⇒ S A ⊥ ( S B C )
Vì vậy áp dụng công thức cho trường hợp khối chóp có cạnh bên vuông góc đáy có:
cho hình chóp S.ABC, có góc ASB=ASC=BSC=60 độ, SA=3, SB=6, SC=9. Tính khoảng cách d từ C đến mp(SAB)
Chọn điểm B' và C' lần lượt thuộc SB và SC sao ctho SA=SB'=SC'=3
Thấy ngay các tam giác SAB', SB'C', SAC', AB'C' đều
suy ra tứ diện SAB'C' là tứ diện đều, cạnh bằng 3
Dễ dàng tính được \(V_{SAB'C'}=\frac{9\sqrt{2}}{4}\)
Dùng tỷ lệ thể tích: \(\frac{V_{S.ABC}}{V_{S.AB'C'}}=\frac{SA}{SA}\cdot\frac{SB}{SB'}\cdot\frac{SC}{SC'}=1\cdot\frac{6}{3}\cdot\frac{9}{3}=6\Rightarrow V_{S.ABC}=\frac{27\sqrt{3}}{2}\)
\(S_{SAB}=\frac{1}{2}.SA.SB.sin\widehat{ASB}=\frac{9\sqrt{3}}{2}\)
\(\Rightarrow d\left(C;\left(SAB\right)\right)=\frac{3V_{S.ABC}}{S_{SAB}}=9\)
Phương pháp:
+) Lấy sao cho SA = SB' = SC' = 2a. Chóp có các cạnh bên bằng nhau có chân đường cao trùng với tâm đường tròn ngoại tiếp đáy.
+) Tính thể tích
Tính thể tích V S . A B C
Cách giải:
Lấy sao cho SA = SB' = SC' = 2a.
là tam giác đều cạnh 2a.
=> AB' = B'C' = 2a
Xét tam giác vuông SAC' có:
Xét tam giác AB'C' có:
Do đó tam giác AB'C' vuông tại B' (Định lí Pytago đảo).
Gọi H là trung điểm của AC' => H là tâm đường tròn ngoại tiếp
Ta có
Chọn: C