K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 7 2021

Qua C kẻ đường thẳng vuông góc AC cắt AB kéo dài tại D

\(\left\{{}\begin{matrix}SC\perp\left(ABC\right)\Rightarrow SC\perp CD\\CD\perp AC\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAC\right)\)

Kẻ \(CH\perp SB\Rightarrow CH\perp\left(SAB\right)\)

\(\Rightarrow\widehat{HCD}\)  là góc giữa (SAB) và (SAC)

\(BC=\sqrt{AC^2-AB^2}=a\sqrt{2}\)

\(\dfrac{1}{CH^2}=\dfrac{1}{SC^2}+\dfrac{1}{BC^2}=\dfrac{13}{24a^2}\Rightarrow CH=\dfrac{2a\sqrt{78}}{13}\)

\(CD=AC.tanA=AC.\dfrac{BC}{AB}=a\sqrt{6}\)

\(sin\widehat{HCD}=\dfrac{DH}{CD}=\dfrac{\sqrt{CD^2-CH^2}}{CD}=...\)

25 tháng 7 2021

Giúp em vẽ hình được không ạ plss

10 tháng 7 2019

Chọn đáp án B

Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có

 

Ta có

Tương tự, ta cũng chứng minh được

Từ đó suy ra 

Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) (ABC) là góc SBH. Vậy SBH =  60 0

Trong tam giác vuông ABH, ta có

Trong tam giác vuông SHB, ta có

2 tháng 1 2020

Đáp án D

Do đó

Vì vậy

= 10 11

7 tháng 11 2019

Đáp án C

22 tháng 2 2018

Chọn A

Gọi H là trung điểm của AC. Đỉnh S cách đều các điểm A, B, C 

=> SH  ⊥ (ABC)

Xác đinh được 

Ta có MH // SA

Gọi I là trung điểm của AB => HI ⊥ AB

và chứng minh được HK  ⊥ (SAB)

Trong tam giác vuông SHI tính được 

23 tháng 3 2019

Chọn D.

Lời giải.

Ta có

Từ (1) và (2) 

         

Gọi I là trung điểm AC 

Mặt khác

Từ (3) và (4) 

 

nên góc giữa hai mặt phẳng (SAC) và (SAB) bằng góc giữa hai đường thẳng HK và HC.

Xét tam giác CHK vuông tại K, có 

NV
5 tháng 2 2021

Kẻ \(BK\perp AC\Rightarrow BK\perp\left(SAC\right)\)

\(\Rightarrow BK=d\left(B;\left(SAC\right)\right)\)

\(\dfrac{1}{BK^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\Rightarrow BK=\dfrac{AB.AC}{\sqrt{AB^2+AC^2}}=\dfrac{a\sqrt{3}}{2}\)

Kẻ \(CP\perp BH\Rightarrow CP\perp\left(SBH\right)\)

\(\Rightarrow CP=d\left(C;\left(SBH\right)\right)\)

\(\widehat{CBP}=\widehat{ACB}=30^0\Rightarrow CH=BC.sin30^0=\dfrac{a\sqrt{3}}{2}\)

\(BH=\dfrac{AC}{2}=\dfrac{1}{2}\sqrt{AB^2+AC^2}=a\)\(\Rightarrow SH=\sqrt{SB^2-BH^2}=a\)

Kẻ \(HE\perp BC\) , kẻ \(HF\perp SE\Rightarrow HF=d\left(H;\left(SBC\right)\right)\)

\(HE=CH.sin30^0=\dfrac{a}{2}\) 

\(\dfrac{1}{HF^2}=\dfrac{1}{SH^2}+\dfrac{1}{HE^2}\Rightarrow HF=\dfrac{SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{a\sqrt{5}}{5}\)