K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔACB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(AB=\sqrt{\left(3a\right)^2+\left(4a\right)^2}=5a\)

\(\widehat{SB;\left(ABC\right)}=\widehat{BS;BA}=\widehat{SBA}\)

Xét ΔSBA vuông tại A có \(tanSBA=\dfrac{SA}{AB}=\dfrac{5a}{5a}=1\)

nên \(\widehat{SBA}=45^0\)

=>\(\widehat{SB;\left(ABC\right)}=45^0\)

b: \(\widehat{SC;\left(ABC\right)}=\widehat{CS;CA}=\widehat{SCA}\)

Xét ΔSCA vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{5}{3}\)

nên \(\widehat{SCA}\simeq59^0\)

=>\(\widehat{SC;\left(ABC\right)}\simeq59^0\)

c: Ta có: BC\(\perp\)AC

BC\(\perp\)SA

AC,SA cùng thuộc mp(SAC)

Do đó:BC\(\perp\)(SAC)

=>BC\(\perp\)SC tại C

\(\widehat{SB;\left(SAC\right)}=\widehat{SB;SC}=\widehat{BSC}\)

Ta có: ΔSAC vuông tại A

=>\(SA^2+AC^2=SC^2\)

=>\(SC=\sqrt{\left(5a\right)^2+\left(3a\right)^2}=a\sqrt{34}\)

Xét ΔSCB vuông tại C có \(tanBSC=\dfrac{BC}{SC}=\dfrac{4a}{a\sqrt{34}}=\dfrac{4}{\sqrt{34}}\)

nên \(\widehat{BSC}\simeq34^026'\)

=>\(\widehat{SB;\left(SAC\right)}\simeq34^026'\)

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

NV
6 tháng 2 2021

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\)

\(\Rightarrow BM\perp\left(SAC\right)\Rightarrow\widehat{BSM}\) là góc giữa SB và (SAC)

\(AC=a\sqrt{2}\) ; \(AM=BM=\dfrac{AC}{2}=\dfrac{a\sqrt{2}}{2}\)

\(SA=\sqrt{SC^2-AC^2}=a\Rightarrow SB=a\sqrt{2}\)

\(sin\widehat{BSM}=\dfrac{BM}{SB}=\dfrac{1}{2}\Rightarrow\widehat{BSM}=30^0\)

a: (SB;(ABC))=(BS;BA)=góc SBA

BA^2+BC^2=AC^2

=>2*BA^2=AC^2

=>AB=BC=a

tan SBA=SA/SB=căn 3

=>góc SBA=60 độ

d: (SB;(BAC))=(BS;BA)=góc SBA=60 độ

e:

CB vuông góc AB

CB vuông góc SA

=>CB vuông góc (SBA)

=>(SC;(SBA))=(SC;SB)=góc BSC

SB=căn SA^2+AB^2=2a

SC=căn SA^2+AC^2=a*căn 5

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

sin BSC=BC/SC=a/a*căn 5=1/căn 5

=>góc BSC\(\simeq27^0\)

13 tháng 11 2019

3 tháng 9 2017

Chọn D

Xác định được

Gọi N là trung điểm BC, suy ra MN//AB.

Lấy điểm E đối xứng với N qua M, suy ra ABNE là hình chữ nhật.

Do đó

a: \(\widehat{SB;AB}=\widehat{SBA}\)

SA\(\perp\)(ABC)

=>\(SA\perp AB;SA\perp AC;SA\perp BC\)

Xét ΔSAB vuông tại A có \(tanSBA=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

=>\(\widehat{SBA}=60^0\)

=>\(\widehat{SB;AB}=60^0\)

b:

\(\widehat{SC;AC}=\widehat{SCA}\)

Xét ΔSAC vuông tại A có \(tanSCA=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

nên \(\widehat{SCA}=60^0\)

=>\(\widehat{SC;AC}=60^0\)

c: ΔABC đều có AM là đường trung tuyến

nên \(AM=BC\cdot\dfrac{\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{2}\)

Ta có: SA\(\perp\)(ABC)

AM\(\subset\)(ABC)

Do đó: SA\(\perp\)AM

=>ΔSAM vuông tại A

\(\widehat{SM;AM}=\widehat{SMA}\)

Xét ΔSMA vuông tại A có \(tanSMA=\dfrac{SA}{AM}=\dfrac{a\sqrt{3}}{\dfrac{a\sqrt{3}}{2}}=2\)

=>\(\widehat{SMA}\simeq63^026'\)

=>\(\widehat{SM;AM}\simeq63^026'\)

NV
16 tháng 1

a.

Góc giữa SB và AB là góc \(\widehat{SBA}\)

Trong tam giác vuông SAB:

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\)

\(\Rightarrow\widehat{SBA}=60^0\)

b.

Góc giữa SC và AC là góc \(\widehat{SCA}\)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

c.

Góc giữa SM và AM là góc \(\widehat{SMA}\)

AM là trung tuyến tam giác đều \(\Rightarrow AM=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow tan\widehat{SMA}=\dfrac{AM}{SA}=2\Rightarrow\widehat{SMA}=60^026'\)

26 tháng 12 2018

30 tháng 5 2022

Do SA ⊥ (ABCD) ⇒ \(\left\{{}\begin{matrix}SA\perp AB\\SA\perp AC\\SA\perp BC\end{matrix}\right.\)

Mà BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC và BC ⊥ AH

Do BC ⊥ AH và AH ⊥ SC ⇒ AH ⊥ (SBC) ⇒ AH ⊥ KH ⇒ \(\widehat{AHK}=90^0\)

ΔSAB và ΔSAC vuông tại A

Mà AH và AK lần lượt là đường cao của ΔSAB và ΔSAC

⇒ \(\left\{{}\begin{matrix}SA^2=SK.SB\\SA^2=SH.SC\end{matrix}\right.\)

⇒ SK . SB = SH . SC

⇒ \(\dfrac{SK}{SH}=\dfrac{SC}{SB}\) ⇒ ΔSKH \(\sim\) ΔSCB ⇒ \(\widehat{SKH}=\widehat{SCB}=90^0\)

⇒ HK ⊥ SB

Mà AK⊥ SB

⇒ ((SAB),(SCB)) = (AK,AH) = \(\widehat{KAH}\) = 450 (đây là góc nhọn, vì \(\widehat{AHK}=90^0\))

⇒ ΔHAK vuông cân tại H ⇒ AK = \(\sqrt{2}AH\)

Ta có : \(\dfrac{S_{SAC}}{S_{SAB}}=\dfrac{\dfrac{1}{2}.AH.SC}{\dfrac{1}{2}AK.SB}=\dfrac{\dfrac{1}{2}.SA.AC}{\dfrac{1}{2}.SA.AB}\)

⇒ \(\dfrac{AH.SC}{AK.SB}=\dfrac{SA.AC}{SA.AB}\)

⇒ \(\dfrac{1}{\sqrt{2}}\) . \(\dfrac{SC}{SB}\) = \(\dfrac{AC}{AB}\). Mà AC = a và AB = 2a

⇒ \(\dfrac{1}{\sqrt{2}}\)\(\dfrac{SC}{SB}\) = \(\dfrac{1}{2}\) ⇒ \(\dfrac{SC^2}{SB^2}\) = \(\dfrac{1}{2}\) . Mà SB2 - SC2 = BC2 = 3a2

⇒ \(\left\{{}\begin{matrix}SC^2=3a^2\\SB^2=6a^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}SB=a\sqrt{6}\\SC=a\sqrt{3}\end{matrix}\right.\) ⇒ SA = a\(\sqrt{2}\)

Từ đó ta tính được SH = \(\dfrac{2a\sqrt{3}}{3}\) và SK = \(\dfrac{a\sqrt{6}}{3}\)

Gọi M là trung điểm của SB thì ta có CM // HK (cùng vuông góc với SB)

Khoảng cách từ HK đến AC bằng khoảng cách từ HK đến (AMC)

 

30 tháng 5 2022

bn ơi cho mình hỏi sao gọi M là tđ sb thì suy ra cm ss vs hk dc nhỉ

 

NV
11 tháng 4 2022

\(SA\perp\left(ABC\right)\Rightarrow AB\) là hình chiếu vuông góc của SB lên (ABC)

\(\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABC)

\(AB=AC\sqrt{2}=a\sqrt{2}\)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=\sqrt{\dfrac{3}{2}}\Rightarrow\widehat{SBA}\approx50^046'\)

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AC\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAC\right)\)

\(\Rightarrow SC\) là hình chiếu vuông góc của SB lên (SAC)

\(\Rightarrow\widehat{BSC}\) là góc giữa SB và (SAC)

\(SB=\sqrt{SA^2+AB^2}=a\sqrt{5}\) ; \(BC=AC=a\)

\(sin\widehat{BSC}=\dfrac{BC}{SB}=\dfrac{1}{\sqrt{5}}\Rightarrow\widehat{BSC}\approx26^034'\)

b.

Theo cmt, \(BC\perp\left(SAC\right)\)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\)

\(\Rightarrow\widehat{SCA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\sqrt{3}\Rightarrow\widehat{SCA}=60^0\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\\SA\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow\left(SAC\right)\perp\left(ABC\right)\)

\(\Rightarrow\) Góc giữa (SAC) và (ABC) là 90 độ

NV
11 tháng 4 2022

undefined