K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(SB=\sqrt{\left(a\sqrt{3}\right)^2+a^2}=2a\)

\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)

Vì SB^2+BC^2=SC^2

nên ΔSBC vuông tại B

(SBC;ABC)=(SB;BA)=góc SBA=60 độ

24 tháng 9 2018

ĐÁP ÁN: B

22 tháng 4 2017

Đáp án B

Ta có BC ⊥ ACBC ⊥ SC, do đó góc giữa mp (SBC) và mp (ABC) chính là góc SCA.

Mặt khác

Vì tam giác SAC vuông tại A nên ta có

đặt t = sin α  ta có hàm số thể tích theo t như sau

NV
2 tháng 4 2023

a.

Do \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)

\(\Rightarrow BC\perp SB\)

b.

\(SA\perp\left(ABC\right)\Rightarrow AC\) là hình chiếu vuông góc của SC lên (ABC)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABC)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{SCA}=\dfrac{SA}{AC}=1\Rightarrow\widehat{SCA}=45^0\)

22 tháng 6 2017

ĐÁP ÁN: D

loading...  loading...  loading...  

NV
12 tháng 1 2024

c.

Từ M kẻ \(MH\perp SC\) (H thuộc SC)

\(\Rightarrow H\in\left(\alpha\right)\Rightarrow\) thiết diện là tam giác BMH

Do \(\left\{{}\begin{matrix}BM\perp\left(SAC\right)\\MH\in\left(SAC\right)\end{matrix}\right.\) \(\Rightarrow BM\perp MH\Rightarrow\Delta BMH\) vuông tại M

Trong tam giác vuông ABC: \(BM=\dfrac{1}{2}AC=a\) (trung tuyến ứng với cạnh huyền)

Hai tam giác vuông CHM và CAS đồng dạng (chung góc C)

\(\Rightarrow\dfrac{MH}{SA}=\dfrac{CM}{SC}\Rightarrow MH=\dfrac{SA.CM}{SC}=\dfrac{SA.\dfrac{AC}{2}}{\sqrt{SA^2+AC^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\Rightarrow S_{BMH}=\dfrac{1}{2}BM.MH=\dfrac{a^2\sqrt{5}}{10}\)