Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi H là trung điểm của AB. Do tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy nên
Đáp án D.
Đặt SH = x, tính SB, SC theo x. Sau đó áp dụng định lí cosin cho ∆ SBC
Tìm được
Chọn đáp án B
Gọi là H hình chiếu của đỉnh S xuống mặt phẳng (ABC). Khi đó, ta có
Ta có
Tương tự, ta cũng chứng minh được
Từ đó suy ra
Do SH ⊥ AB, BH ⊥ AB nên suy ra góc giữa (SAB) và (ABC) là góc SBH. Vậy SBH = 60 0
Trong tam giác vuông ABH, ta có
Trong tam giác vuông SHB, ta có
Đáp án A
SM = M B tan 60 0 = 3 6
IG = x ⇒ JM = IG ⇒ SI = 1 12 + ( 3 6 + x ) 2 , IA = 1 3 + x 2
SI = IA ⇒ x 2 + 1 4 = ( x 2 + 3 3 x + 1 2 ) ⇒ x = 1 2 3 ⇒ R = 5 12
V = 4 3 πR 3 = 5 15 π 54