Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của AC
Đỉnh S cách đều các điểm A, B, C
Xác đinh được
Ta có MH//SA
Gọi I là trung điểm của AB
và chứng minh được
Trong tam giác vuông SHI tính được
Chọn A.
Theo giả thiết, ta có và
Do
Từ (1) và (2) suy ra ba điểm B, H, K cùng nhìn xuống AC dưới một góc 90 ° nên
Chọn C.
Chọn B.
Phương pháp:
+ Gọi H là trung điểm BC. Ta chứng minh A H ⊥ A B C và AH là trục đường tròn ngoại tiếp tam giác
SBC
+ Suy ra tâm mặt cầu ngoại tiếp chóp S. ABC là giao của AH và đường trung trực cạnh AB.
+ Chỉ ra tam giác SBC vuông tại S từ đó tính SC theo định lý Pytago.
Cách giải:
Đáp án C
Gọi O = A C ∩ B D , G = A O ∩ A C '
Ta có A C ⊥ ( S B D ) mặt khác S C ⊥ B ' D ' ⇒ B ' D ' ⊥ ( S A C ) ⇒ B ' D ' / / B D
Theo Định lý Talet ta có S B ' B ' B = S D ' D ' D = S G G O = 2 ⇒ G là trọng tâm ∆ S A C ⇒ C ' là trung điểm SC
Vậy V S A B ' C ' D ' V S A B C D = V S A B ' C ' + V S A C ' D ' V S A B C D = 1 2 ( V S A B ' C ' V S A B C + V S A C ' D ' V S A C D ) = 1 2 S B ' . S C ' S B . S C + S C ' . S D ' S C . S D
Đáp án B
Gọi D là hình chiếu của S trên (ABC). Khi đó S D ⊥ A B C .
Do đó hình chiếu của SC trên (ABC) là CD. Suy ra góc giữa SC và (ABC) là S C D ^ .
Ta có B C ⊥ S C B C ⊥ S D ⇒ B C ⊥ C D , A B ⊥ S A A B ⊥ S D ⇒ A B ⊥ A D .
Vậy ABCD là hình chữ nhật.
Theo đề S C D ^ = 60 0 . Ta tính được B D = A C = a 5 , D S = C D 3 = a 3 .
Vậy S B = S D 2 + B D 2 = 8 a 2 = 2 a 2 .