Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có:
Giả sử:
⇒ O ∈ (SAC) ∩ (SBD)
⇒ (SAC) ∩ (SBD) = SO
b) Ta có:
Ta lại có
c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.
a/ \(\left\{{}\begin{matrix}S\in SB\subset\left(SBC\right)\\S\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow S=\left(SBC\right)\cap\left(SCD\right)\)
\(\left\{{}\begin{matrix}C\in SC\subset\left(SBC\right)\\C\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow C=\left(SBC\right)\cap\left(SCD\right)\)
\(\Rightarrow\left(SBC\right)\cap\left(SCD\right)=SC\)
b/ Gọi O là giao điểm của AC và BD
\(\Rightarrow\left\{{}\begin{matrix}O=\left(SAC\right)\cap\left(SBD\right)\\S=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\Rightarrow\left(SBD\right)\cap\left(SAC\right)=SO\)
c/ \(\left\{{}\begin{matrix}S=\left(SAD\right)\cap\left(SBC\right)\\Sx//AD//BC\end{matrix}\right.\Rightarrow\left(SAD\right)\cap\left(SBC\right)=Sx\)
a) Gọi giao điểm của AD và BC là K.
Ta có: SK cùng thuộc mp(SAD) và (SBC).
Vậy SK là giao tuyến của (SAD) và (DBC).
b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.
c) Gọi O là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)
Suy ra SO là giao tuyến của (SAC) và (SBD).
a: \(I\in AC\subset\left(SAC\right)\)
\(I\in BD\subset\left(SBD\right)\)
Do đó: \(I\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SI\)
b: \(SD\subset\left(SCD\right)\)
\(SD\subset\left(SAD\right)\)
Do đó: \(SD=\left(SCD\right)\cap\left(SAD\right)\)
c: \(K\in SD\subset\left(SAD\right)\)
\(K\in\left(KAB\right)\)
Do đó: \(K\in\left(KAB\right)\cap\left(SAD\right)\)
mà \(A\in\left(AKB\right)\cap\left(SAD\right)\)
nên \(\left(KAB\right)\cap\left(SAD\right)=KA\)
a: Trong mp(ABCD), Gọi giao của AC và BD là O
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà S thuộc (SAC) giao (SBD)
nên (SAC) giao (SBD)=SO
b:Trong mp(ABCD), Gọi giao của AB và CD là M
\(M\in AB\subset\left(SAB\right)\)
\(M\in CD\subset\left(SCD\right)\)
=>M thuộc (SAB) giao (SCD)
mà S thuộc (SAB) giao (SCD)
nên (SAB) giao (SCD)=SM
c: Trong mp(ABCD), gọi N là giao của AD với BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c; AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
Gọi giao điểm của AC và BD là K
\(K\in AC\subset\left(SAC\right)\)
\(K\in BD\subset\left(SBD\right)\)
Do đó: \(K\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SK\)
Gọi giao điểm của AB và CD là H
\(H\in AB\subset\left(SAB\right)\)
\(H\in CD\subset\left(SCD\right)\)
Do đó: \(H\in\left(SAB\right)\cap\left(SCD\right)\)
mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)
nên \(\left(SAB\right)\cap\left(SCD\right)=SH\)
Gọi M là giao điểm của AD và BC
\(M\in AD\subset\left(SAD\right)\)
\(M\in BC\subset\left(SBC\right)\)
Do đó: \(M\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SM\)
\(P\in SD\subset\left(SCD\right)\)
\(P\in\left(PAB\right)\)
Do đó: \(P\in\left(SCD\right)\cap\left(PAB\right)\)(1)
\(H\in AB\subset\left(PAB\right);H\in CD\subset\left(SCD\right)\)
Do đó: \(H\in\left(PAB\right)\cap\left(SCD\right)\)(2)
Từ (1) và (2) suy ra \(\left(SCD\right)\cap\left(APB\right)=HP\)
Cảm ơn ạ