K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2023

Gọi giao điểm của AC và BD là K

\(K\in AC\subset\left(SAC\right)\)

\(K\in BD\subset\left(SBD\right)\)

Do đó: \(K\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SK\)

Gọi giao điểm của AB và CD là H

\(H\in AB\subset\left(SAB\right)\)

\(H\in CD\subset\left(SCD\right)\)

Do đó: \(H\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SH\)

Gọi M là giao điểm của AD và BC

\(M\in AD\subset\left(SAD\right)\)

\(M\in BC\subset\left(SBC\right)\)

Do đó: \(M\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SM\)

\(P\in SD\subset\left(SCD\right)\)

\(P\in\left(PAB\right)\)

Do đó: \(P\in\left(SCD\right)\cap\left(PAB\right)\)(1)

\(H\in AB\subset\left(PAB\right);H\in CD\subset\left(SCD\right)\)

Do đó: \(H\in\left(PAB\right)\cap\left(SCD\right)\)(2)

Từ (1) và (2) suy ra \(\left(SCD\right)\cap\left(APB\right)=HP\)

10 tháng 11 2023

Cảm ơn ạ

10 tháng 12 2021

10 tháng 12 2021

24 tháng 3 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a)

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ O ∈ (SAC) ∩ (SBD)

⇒ (SAC) ∩ (SBD) = SO

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Ta lại có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.

28 tháng 12 2020

a/ \(\left\{{}\begin{matrix}S\in SB\subset\left(SBC\right)\\S\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow S=\left(SBC\right)\cap\left(SCD\right)\)

\(\left\{{}\begin{matrix}C\in SC\subset\left(SBC\right)\\C\in SC\subset\left(SCD\right)\end{matrix}\right.\Rightarrow C=\left(SBC\right)\cap\left(SCD\right)\)

\(\Rightarrow\left(SBC\right)\cap\left(SCD\right)=SC\)

b/ Gọi O là giao điểm của AC và BD

\(\Rightarrow\left\{{}\begin{matrix}O=\left(SAC\right)\cap\left(SBD\right)\\S=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\Rightarrow\left(SBD\right)\cap\left(SAC\right)=SO\)

c/ \(\left\{{}\begin{matrix}S=\left(SAD\right)\cap\left(SBC\right)\\Sx//AD//BC\end{matrix}\right.\Rightarrow\left(SAD\right)\cap\left(SBC\right)=Sx\)

21 tháng 11 2023

loading...  loading...  loading...  

QT
Quoc Tran Anh Le
Giáo viên
23 tháng 8 2023

loading...

a) Gọi giao điểm của AD và BC là K.

Ta có: SK cùng thuộc mp(SAD) và (SBC).

Vậy SK là giao tuyến của (SAD) và (DBC).

b) (SAB) và (SCD) có AB // CD và S chung nên giao tuyến là dường thẳng Sx đi qua x và song song với AB và CD.

c) Gọi O là giao điểm của AC và BD suy ra O thuộc giao tuyến của (SAC) và (SBC)

Suy ra SO là giao tuyến của (SAC) và (SBD).

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

4 tháng 11 2017

a, Giao tuyến (SAC) và (SBD) là SO


A S B C D O

a: \(I\in AC\subset\left(SAC\right)\)

\(I\in BD\subset\left(SBD\right)\)

Do đó: \(I\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SI\)

b: \(SD\subset\left(SCD\right)\)

\(SD\subset\left(SAD\right)\)

Do đó: \(SD=\left(SCD\right)\cap\left(SAD\right)\)

c: \(K\in SD\subset\left(SAD\right)\)

\(K\in\left(KAB\right)\)

Do đó: \(K\in\left(KAB\right)\cap\left(SAD\right)\)

mà \(A\in\left(AKB\right)\cap\left(SAD\right)\)

nên \(\left(KAB\right)\cap\left(SAD\right)=KA\)

a: Trong mp(ABCD), Gọi giao của AC và BD là O

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà S thuộc (SAC) giao (SBD)

nên (SAC) giao (SBD)=SO

b:Trong mp(ABCD), Gọi giao của AB và CD là M

\(M\in AB\subset\left(SAB\right)\)

\(M\in CD\subset\left(SCD\right)\)

=>M thuộc (SAB) giao (SCD)

mà S thuộc (SAB) giao (SCD)

nên (SAB) giao (SCD)=SM

c: Trong mp(ABCD), gọi N là giao của AD với BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

d: \(CD\subset\left(HKCD\right)\)

\(CD\subset\left(ABCD\right)\)

Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)

a: \(O\in BD\subset\left(SBD\right)\)

\(O\in AC\subset\left(SAC\right)\)

Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

c; AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC