Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(SB\subset\left(SAB\right)\)
\(SB\subset\left(SBD\right)\)
Do đó: \(\left(SAB\right)\cap\left(SBD\right)=SB\)
b: \(F\in SB\subset\left(SAB\right);F\in\left(SDF\right)\)
Do đó: \(F\in\left(SAB\right)\cap\left(SDF\right)\)
mà \(S\in\left(SAB\right)\cap\left(SDF\right)\)
nên \(\left(SAB\right)\cap\left(SDF\right)=SF\)
c: \(F\in SB\subset\left(SBC\right);F\in\left(FCD\right)\)
\(\Leftrightarrow F\in\left(SBC\right)\cap\left(FCD\right)\)
mà \(C\in\left(CBS\right)\cap\left(FCD\right)\)
nên \(\left(FCD\right)\cap\left(SBC\right)=CF\)
a: \(I\in BD\subset\left(SBD\right)\)
\(I\in AC\subset\left(SAC\right)\)
Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SI\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
=>\(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: \(S\in\left(SAB\right)\cap\left(SCD\right)\)
AB//CD
=>(SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: \(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: (HKCD) giao (ABCD)=CD
d: \(CD\subset\left(HKCD\right)\)
\(CD\subset\left(ABCD\right)\)
Do đó: \(\left(HKCD\right)\cap\left(ABCD\right)=CD\)
a: \(O\in BD\subset\left(SBD\right)\)
\(O\in AC\subset\left(SAC\right)\)
Do đó: \(O\in\left(SBD\right)\cap\left(SAC\right)\)
=>\(\left(SBD\right)\cap\left(SAC\right)=SO\)
b: AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c; AD//BC
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC
a: Chọn mp(SAB) có chứa SA
\(AB\subset\left(SAB\right);AB\subset\left(ABCD\right)\)
Do đó: \(AB=\left(SAB\right)\cap\left(ABCD\right)\)
Ta có: SA cắt AB tại A
=>A là giao điểm của SA với mp(ABCD)
b: Gọi E là giao điểm của AB và CD trong mp(ABCD)
\(E\in AB\subset\left(SAB\right);E\in CD\subset\left(SCD\right)\)
=>\(E\in\left(SAB\right)\cap\left(SCD\right)\)
mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)
nên \(\left(SAB\right)\cap\left(SCD\right)=SE\)
a: \(I\in AC\subset\left(SAC\right)\)
\(I\in BD\subset\left(SBD\right)\)
Do đó: \(I\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SI\)
b: \(SD\subset\left(SCD\right)\)
\(SD\subset\left(SAD\right)\)
Do đó: \(SD=\left(SCD\right)\cap\left(SAD\right)\)
c: \(K\in SD\subset\left(SAD\right)\)
\(K\in\left(KAB\right)\)
Do đó: \(K\in\left(KAB\right)\cap\left(SAD\right)\)
mà \(A\in\left(AKB\right)\cap\left(SAD\right)\)
nên \(\left(KAB\right)\cap\left(SAD\right)=KA\)
a)
Ta có:
Giả sử:
⇒ O ∈ (SAC) ∩ (SBD)
⇒ (SAC) ∩ (SBD) = SO
b) Ta có:
Ta lại có
c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.
a: Trong mp(ABCD), Gọi giao của AC và BD là O
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà S thuộc (SAC) giao (SBD)
nên (SAC) giao (SBD)=SO
b:Trong mp(ABCD), Gọi giao của AB và CD là M
\(M\in AB\subset\left(SAB\right)\)
\(M\in CD\subset\left(SCD\right)\)
=>M thuộc (SAB) giao (SCD)
mà S thuộc (SAB) giao (SCD)
nên (SAB) giao (SCD)=SM
c: Trong mp(ABCD), gọi N là giao của AD với BC
\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)
Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)
mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)
nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)