K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Vì mặt phẳng không đi qua S và song song với mặt phẳng đáy, cắt các cạnh SA1, SA2,.... SAn, tương ứng tại B1, B2,..., Bn nên theo định lý Talet trong từng tam giác SA1A2, …, SAn-1An thì \(\frac{{S{B_1}}}{{S{A_1}}} = \frac{{S{B_2}}}{{S{A_2}}} = \frac{{{B_1}{B_2}}}{{{A_1}{A_2}}} = ... = \frac{{S{B_n}}}{{S{A_n}}}\) mà S.A1A2...A là hình chóp đều nên S.B1B2...Bn cũng là một hình chóp đều.

b) Ta có \(SH \bot \left( {{A_1}{A_2}...{A_n}} \right)\) (H là tâm của đa giác A1A2...An)

Mà \(\left( {{A_1}{A_2}...{A_n}} \right)//\left( {{B_1}{B_2}...{B_n}} \right)\)

\( \Rightarrow \)\(SH \bot \left( {{B_1}{B_2}...{B_n}} \right)\)

Mà \(SK \bot \left( {{B_1}{B_2}...{B_n}} \right)\) (K là tâm của đa giác B1B2...Bn)

\( \Rightarrow \) SH trùng SK

Vậy đường thẳng SH đi qua tâm K của đa giác đều B1B2...Bn, và HK vuông góc với các mặt phẳng (A1A2...An), (B1B2...Bn)

27 tháng 9 2021

Đễ thế mà ko bt mh cũng ko bt luôn

28 tháng 9 2021

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

~ Chúc bn hok tốt ~

Giải thích các bước giải:

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

27 tháng 9 2021

Giải thích các bước giải:

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh

22 tháng 8 2023

S= u1.u+ u2.u2+...+un.u

S = u1.(u- d) + u2.(u3 - d)+...+un(un+1 - d)

S = u1.u2 + u2.u+...+un.un+1-d(u1+u2+...+un)

Đặt A = u2.u3 + u3.u4+...+un.un+1

3d.A = u2.u3.(u4-u1) + u3.u4.(u5-u2)+...+un.un+1.(un+2-un-1

3d.A = u2.u3.u4 - u1.u2.u3 + u3.u4.u- u2.u3.u4+...+un.un+1.un+2 - un-1.un.un+1

3d.A = un.un+1.un+2 - u1.u2.u3

3d.A = (u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d) 

A = [(u1 + d.n - d)(u1 + d.n)(u+ d.n + d) - u1.(u1+d).(u1+2.d)]/(3.d) 

S = A + u1.(u1 + d) + d[2.u1+(n-1).d].n/2 

 

     
Bài 1: 1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0 2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr: 1,góc BAQ=góc CAP 2,Điểm Q di chyển trên 1...
Đọc tiếp

Bài 1:

1,giai pt: cos2x+sin2x-cosx-(1-sinx)tanx=0

2,cho h/s y=(x+3)/(x+2) có đt(c) và (d):y=-x+m.tim m để (d) cắt (c) tại 2 điểm phân biệt A,B sao cho góc AOB nhọn

Bài 2:Cho tam giác ABC,các điểm M,N lần lượt di chuyển trên các đường thẳng AB và AC sao cho MN//BC.gọi P=BN giao CM.đường tròn ngoai tiếp các tam giác BMP và CNP cắt nhau tại 2 điểm phân biệt P và Q.cmr:

1,góc BAQ=góc CAP

2,Điểm Q di chyển trên 1 đường thẳng cố định

Bai 3:Tìm tất cả các căp số thực(a:b) có tính chất:Trong (0xy),parabol y=x2-2bx +(a+1) cắt 0x tại 2 điểm phân biệt A,B cắt 0y tại C(C#0) sao cho I(a,b) là tâm đường tròn ngoại tiếp tam giác ABC

Bài 4:

1,cho x,y>0 tm:log3(1-xy)/(x+2y) = 3xy +x +2y -4.tìn gtnn của Q=x+y

2,cho h/s f(x)=ln2019 – ln( (x+1)/x).tính S=f’(1) +f’(2) +f’(3) +…+f’(2019)

Bai 5:cho(xn): x1=2/3

Xn+1=xn/(2(2n+1)xn +1), mọi n>=1

1,đặt Vn=1/xn. cmr Vn+1=Vn+2(2n+1),mọi n>=1.tìm Vn

2,đặt Yn=x1+x2+x3+….+xn.Tính Lim yn

Bài 6: cho tam giác ABC vuông cân tại B.M là trung điểm AB.gọi I là điểm di chuyển trên đường thẳng MC sao cho|2 vecto IM+ vecto IC- vecto IA| đạt gtnn.Tính tỉ số AC/AI

0
5 tháng 2 2020
https://i.imgur.com/UjmUCMv.jpg
5 tháng 2 2020

ôn thi IMO à ;D