K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

Đáp án C

14 tháng 11 2017

Đáp án D

8 tháng 3 2017

Chọn C

* Số tam giác có 2 đỉnh thuộc d 1  và 1 đỉnh thuộc d 2  là: .

* Số tam giác có 1 đỉnh thuộc  d 1  và 2 đỉnh thuộc  d 2 là: .

Vậy có 70 +  105 = 175 tam giác.

13 tháng 1 2019

Có 2 trường hợp sau:

+ Lấy 1 điểm trên d1 và 2 điểm trên d2, suy ra cớ 10 C n 2  tam giác

+ Lấy 2 điểm trên d1 và 1 điểm trên d2, suy ra cớ n C 10 2  tam giác

Suy ra có 

30 tháng 9 2019

Đáp án B

Có 2 trường hợp sau:

+ Lấy 1 điểm trên d1 và 2 điểm trên d2, suy ra cớ 10 C n 2  tam giác

+ Lấy 2 điểm trên d1 và 1 điểm trên d2, suy ra cớ n C 10 2  tam giác

Suy ra có

14 tháng 12 2017

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d1 và hai đỉnh thuộc d2. Loại này có  tam giác.

Loại 2: Tam giác có một đỉnh thuộc d2 và hai đỉnh thuộc d1. Loại này có  tam giác.

Theo bài ra ta có:

Chọn A.

7 tháng 5 2017

Tam giác cần lập thuộc hai loại

Loại 1: Tam giác có một đỉnh thuộc d 1 và hai đỉnh thuộc d 2 .

Loại này có C 10 1 . C n 2  tam giác.

Loại 2: Tam giác có một đỉnh thuộc  d 2  và hai đỉnh thuộc  d 1 .

Loại này có C 10 2 . C n 1  tam giác.

Theo bài ra ta có:  C 10 1 . C n 2 + C 10 2 . C n 1 = 2800

⇔ 10 n ( n − 1 ) 2 + 45 n = 2800 ⇔ n 2 + 8 n − 560 = 0 ⇔ n = 20

Chọn đáp án D

30 tháng 5 2018

Gọi I = d1 ∩ d2; (P) là mặt phẳng chứa (d1) và (d2).

Gọi d3 ∩ d1 = M; d3 ∩ d2 = N.

+ M ∈ d1, mà d1 ⊂ (P) ⇒ M ∈ (P)

+ N ∈ d2, mà d2 ⊂ (P) ⇒ N ∈ (P).

Nếu M ≠ N ⇒ d3 có hai điểm M, N cùng thuộc (P)

⇒ d3 ⊂ (P)

⇒ d1; d2; d3 đồng phẳng (trái với giả thiết).

⇒ M ≡ N

⇒ M ≡ N ≡ I

Vậy d1; d2; d3 đồng quy.

19 tháng 12 2017

Đáp án B

Các cách xác định mặt phẳng đúng: 2; 4 ; 8

1. Đi qua 3 điểm phân biệt không thẳng hàng

3. Trong trường hợp 2 đường thẳng chéo nhau thì không thể xác định được mặt phẳng

5. Song song với 2 đường thẳng cắt nhau  Có vô số mặt phẳng như vậy.

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

6. Song song với 2 đường thẳng chéo nhau  Có vô số mặt phẳng như vậy

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

7. Đi qua 1 điểm và song song với một đường thẳng cho trước.  Có vô số mặt phẳng như vậy

28 tháng 3 2018

Đáp án là C 

Một tam giác được tạo bởi ba điểm phân biệt nên ta xét:

TH1. Chọn 1 điểm thuộc d 1 và 2 điểm thuộc  d 2 : có c 17 1 . c 20 1  tam giác.

TH2. Chọn 2 điểm thuộc  d 1  và 1 điểm thuộc d 2 :  có c 17 2 . c 20 1  tam giác.

Như vậy, ta có C 17 1 . C 20 1 + C 17 2 . C 20 1 = 5950  tam giác cần tìm.