K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2017

Đẳng thức đúng là: \(\overrightarrow{AB}+\overrightarrow{BD}=2\overrightarrow{BC}\)

Vậy chọn câu a)

ABDC là hình bình hành

=>\(\overrightarrow{AB}=\overrightarrow{CD};\overrightarrow{AC}=\overrightarrow{BD}\)

A: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\ne\overrightarrow{CB}\)

=>Loại

B: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}\)

\(=\overrightarrow{BA}+\overrightarrow{CB}+\overrightarrow{DC}\)

\(=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DC}+\overrightarrow{CA}=\overrightarrow{DA}\)<>vecto BC

C: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{AD}\)

=>Loại

D: \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{DA}< >\overrightarrow{CA}\)

=>Loại

Do đó: Không có đáp án nào đúng

Câu 1: cho hình bình hành ABCD. Đẳng thức nào sau đây đúng? A.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}\) B. \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{BC}\) C.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{AD}\) D.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}\) Câu 2: Cho 4 điểm A,B,C,D. Đẳng thức nào sau đây...
Đọc tiếp

Câu 1: cho hình bình hành ABCD. Đẳng thức nào sau đây đúng?

A.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CB}\)

B. \(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{BC}\)

C.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{AD}\)

D.\(\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}\)

Câu 2: Cho 4 điểm A,B,C,D. Đẳng thức nào sau đây đúng?

A.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)

B.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{BC}\)

C.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AC}+\overrightarrow{BD}\)

D.\(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{DA}+\overrightarrow{BC}\)

Câu 3: cho ΔABC, vẽ bên ngoài tam giác các hình bình hành ABEF, ACPQ,BCMN. Xét các mệnh đề:

(I) \(\overrightarrow{NE}+\overrightarrow{FQ}=\overrightarrow{MP}\)

(II) \(\overrightarrow{EF}+\overrightarrow{QP}=\overrightarrow{-MN}\)

(III) \(\overrightarrow{AP}+\overrightarrow{BF}+\overrightarrow{CN}=\overrightarrow{AQ}+\overrightarrow{EB}+\overrightarrow{MC}\)

Mệnh đề đúng là:

A. Chỉ (I)      B.Chỉ (III)      C.(I) và (II)          D.Chỉ (II)

1
AH
Akai Haruma
Giáo viên
8 tháng 12 2023

Câu 1: A

$\overrightarrow{BA}-\overrightarrow{BC}+\overrightarrow{DC}=\overrightarrow{CA}+\overrightarrow{DC}=\overrightarrow{DA}=\overrightarrow{CB}$

Câu 2:

$\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{DB}$

$=\overrightarrow{DC}+\overrightarrow{CB}$

$\Rightarrow \overrightarrow{AB}-\overrightarrow{DC}=\overrightarrow{CB}+\overrightarrow{AD}$

$\Rightarrow \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}$

Đáp án A.

NV
12 tháng 9 2021

Bằng \(\overrightarrow{AB}\) là \(\overrightarrow{DC}\)

Bằng \(\overrightarrow{OB}\) là \(\overrightarrow{DO}\)

Có độ dài bằng OB là \(\overrightarrow{OB};\overrightarrow{BO};\overrightarrow{OD};\overrightarrow{DO}\)

12 tháng 9 2021

a) Bằng vectơ AB :
\(\overrightarrow{DC}\)
Bằng vectơ OB :
\(\overrightarrow{DO}\)
b)Có độ dài bằng OB :
\(\overrightarrow{OD}, \overrightarrow{DO}, \overrightarrow{BO}\)
 

1: A(2;0); B(-3;4); C(1;-5)

Tọa độ vecto AB là:

\(\left\{{}\begin{matrix}x=-3-2=-5\\y=4-0=4\end{matrix}\right.\)

=>\(\overrightarrow{AB}=\left(-5;4\right)\)

Tọa độ vecto AC là:

\(\left\{{}\begin{matrix}x=1-2=-1\\y=-5-0=-5\end{matrix}\right.\)

Vậy: \(\overrightarrow{AC}=\left(-1;-5\right)\)

\(\overrightarrow{AB}=\left(-5;4\right)\)

Vì \(\left(-1\right)\cdot\left(-5\right)=5< >-20=-5\cdot4\)

nên A,B,C không thẳng hàng

=>A,B,C là ba đỉnh của một tam giác

2: Tọa độ trọng tâm G của ΔABC là:

\(\left\{{}\begin{matrix}x=\dfrac{2-3+1}{3}=\dfrac{0}{3}=0\\y=\dfrac{0+4-5}{3}=-\dfrac{1}{3}\end{matrix}\right.\)

3:

\(\overrightarrow{AB}=\left(-5;4\right);\overrightarrow{DC}=\left(1-x;-5-y\right)\)

ABCD là hình bình hành

nên \(\overrightarrow{AB}=\overrightarrow{DC}\)

=>\(\left\{{}\begin{matrix}1-x=-5\\-5-y=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1+5=6\\y=-5-4=-9\end{matrix}\right.\)

Vậy: D(6;-9)

4: \(\overrightarrow{MA}=\left(2-x;-y\right);\overrightarrow{MB}=\left(-3-x;4-y\right);\overrightarrow{MC}=\left(1-x;-5-y\right)\)

\(2\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)

=>\(\left\{{}\begin{matrix}2\left(2-x\right)+\left(-3-x\right)+3\left(1-x\right)=0\\2\left(-y\right)+\left(4-y\right)+3\left(-5-y\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4-2x-3-x+3-3x=0\\-2y+4-y-15-3y=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-6x+4=0\\-6y-11=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x=-4\\-6y=11\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{11}{6}\end{matrix}\right.\)

vậy: \(M\left(\dfrac{2}{3};-\dfrac{11}{6}\right)\)

5:

A(2;0); B(-3;4); C(1;-5); N(x;y)

A là trọng tâm của ΔBNC

=>\(\left\{{}\begin{matrix}x_A=\dfrac{x_B+x_N+x_C}{3}\\y_A=\dfrac{y_B+y_N+y_C}{3}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2=\dfrac{-3+1+x}{3}\\0=\dfrac{4-5+y}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=6\\y-1=0\end{matrix}\right.\)

=>x=8 và y=1

Vậy: N(8;1)

6: A là trung điểm của BE

=>\(\left\{{}\begin{matrix}x_B+x_E=2\cdot x_A\\y_B+y_E=2\cdot y_A\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-3+x_E=2\cdot2=4\\4+y_E=2\cdot0=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_E=7\\y_E=-4\end{matrix}\right.\)

Vậy: E(7;-4)

24 tháng 11 2017

Đáp án: C

A ∩  B = {b; d}; A ∩  C = {a; b}; B ∩ C = {b; e}

A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}

A ∪  B = {a; b; c; d; e}; A ∪  C = {a; b; c; d; e}

A ∩  (B \ C) = {d}. (A ∩  B) \ (A ∩  C) =  {d}.

A \ (B ∩ C) = {a; c; d}. (A \ B) ∪  (A \ C) = {a; c; d}.

(A \ B) ∩  (A \ C) = {c}.

a. A ∩  (B \ C) = (A ∩  B) \ (A ∩  C) ={d} ⇒ a đúng.

b. A \ (B ∩ C)= {a; c; d}  (A \ B) ∩  (A \ C)={c} ⇒ b sai.

c. A ∩  (B \ C) ={d}  (A \ B) ∩  (A \ C)={c}   c sai

d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.