K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Tham khảo:

Ta có: \( \overrightarrow {AB}  + \overrightarrow {AD}  =  \overrightarrow {AC} \) (do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {BM}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

\( \Rightarrow \) Tứ giác ABMC là hình bình hành.

\( \Rightarrow  \overrightarrow {DC} =\overrightarrow {AB}  = \overrightarrow {CM} \). 

\( \Rightarrow C\) là trung điểm DM.

Vậy M thuộc DC sao cho C là trung điểm DM.

Chú ý khi giải

+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

+) ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vì ABCD là hình bình hành nên \(\left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\), hay \(\overrightarrow {AD}  = \overrightarrow {BC} \).

Do đó \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

\(AD = BC\) nhưng \(AD\) và \(BC\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) không bằng nhau.

\(CD > AB\) do đó hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.

\(AC\) và \(BD\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không bằng nhau.

24 tháng 9 2023

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(AB = CD \Rightarrow \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {CD} } \right|\)

\(AB//CD\) và \(\overrightarrow {AB} \), \(\overrightarrow {DC} \) có hướng từ trái sang phải

Suy ra \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng hướng

b) Ta có: \(AD = CB \Rightarrow \left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {CB} } \right|\)

\(AD//CB\) và \(\overrightarrow {AD} \)có hướng từ trên xuống dưới, \(\overrightarrow {CB} \) có hướng từ dưới lên trên. Suy ra \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) ngược hướng

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(\overrightarrow {CE}  = \overrightarrow {AN}  \Rightarrow CE//AN\) và \(CE = AN = ND = BM = MC\)

Suy ra \(\overrightarrow {MC}  = \overrightarrow {CE} \)

+) \(\overrightarrow {NC}  + \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CE}  = \overrightarrow {NE} \)

+) ABCD là hình bình hành nên \(\overrightarrow {CD}  = \overrightarrow {BA} \)

\(\overrightarrow {AM}  + \overrightarrow {CD}  = \overrightarrow {AM}  + \overrightarrow {BA}  = \overrightarrow {BM} \)

+) Ta có \(\overrightarrow {MC}  = \overrightarrow {AN}  \Rightarrow AMCN\) là hình bình hành nên \(\overrightarrow {NC}  = \overrightarrow {AM} \)

\(\overrightarrow {AD}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {AM}  = \overrightarrow {AE} \) (vì AMED là hình bình hành)

b) Ta có:

+) \(\overrightarrow {NC}  - \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CM}  = \overrightarrow {NM} \)

+) \(\overrightarrow {AC}  - \overrightarrow {BC}  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

+) \(\overrightarrow {AB}  - \overrightarrow {ME}  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

c) Ta có:

\(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AM}  + \overrightarrow {MC}  = \overrightarrow {AC} \)

Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Từ đó suy ra \(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AD} \) (đpcm)

24 tháng 9 2023

Tham khảo:

a)  M thuộc cạnh BC nên vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng với nhau.

Lại có: MB = 3 MC \( \Rightarrow \overrightarrow {MB}  =  - 3.\overrightarrow {MC} \)

b) Ta có: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {BM} \)

Mà \(BM = \dfrac{3}{4}BC\) nên \(\overrightarrow {BM}  = \dfrac{3}{4}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \dfrac{3}{4}\overrightarrow {BC} \)

Lại có: \(\overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB} \) (quy tắc hiệu)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \dfrac{3}{4}\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right) = \dfrac{1}{4}.\overrightarrow {AB}  + \dfrac{3}{4}.\overrightarrow {AC} \)

Vậy \(\overrightarrow {AM}  = \dfrac{1}{4}.\overrightarrow {AB}  + \dfrac{3}{4}.\overrightarrow {AC} \)

24 tháng 9 2023

Tham khảo:

Gọi M, N lần lượt là điểm đầu và điểm cuối của vecto \(\overrightarrow a \).

Từ B, M, N ta dựng hình bình hành BMNC.

Khi đó: \(\overrightarrow {MN}  = \overrightarrow {BC} \) hay \(\overrightarrow a  = \overrightarrow {BC} \).

\( \Rightarrow \overrightarrow a  + \overrightarrow a  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

a) Vì  \(\overrightarrow {AB}  = \overrightarrow a  = \overrightarrow {BC} \) nên A, B, C thẳng hàng và B là trung điểm của AC.

Vậy \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)

b) Ta có:  \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow {AB} \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow {AB} } \right|\)

Mà \(\overrightarrow {AB}  = \overrightarrow a \) nên:  \(\overrightarrow a  + \overrightarrow a \) và \(\overrightarrow a \) cùng hướng, \(\left| {\overrightarrow a  + \overrightarrow a } \right| = 2.\left| {\overrightarrow a } \right|\).

16 tháng 1 2021

Tham khảo:

Cho hình thang vuông ABCD

19 tháng 10 2016

2

Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\).                                                                                    Câu 2. Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC.             ...
Đọc tiếp

Câu 1: Cho hình bình hành ABCD, M là trung điểm cạnh CD, N là trung điểm đoạn BM. Chứngminh rằng : \(\overrightarrow{AN}=\dfrac{3}{4}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AD}\).                                                                                    Câu 2Trong mặt phẳng Oxy, cho tam giác ABC biết A (-1;-3), B (0;2), C (2;1)a) Tìm tọa độ điểm M trên Ox sao cho tam giác AMB vuông tại M.b) Tìm tọa độ hình chiếu của A lên BC.                Câu 3. Cho tam giác ABCđều cạnh a , có AH là đường trung tuyến. Tính \(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|\).            Câu 4. Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?                                              Câu 5. Để kéo đường dây điện băng qua một cái hồ hình chữ nhậtvới độ dài AB =140m , AD = 50m. Người ta dự định làm cột điện liên tiếp thẳng hàng và cách đều nhau. Cột thứ nhất nằm trên bờ AB và cách đỉnh A một khoảng bằng 10m. Cột thứ năm nằm trên bờ CD và cách đỉnh C một khoảng bằng 30m. Tính khoảng cách từ cột thứ tư đến bờ AD.

1

Câu 3:

\(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|=\sqrt{AC^2+AH^2+2\cdot AC\cdot AH\cdot cos30}\)

\(=\sqrt{a^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2+2\cdot a\cdot\dfrac{a\sqrt{3}}{2}\cdot\dfrac{\sqrt{3}}{2}}\)

\(=\sqrt{a^2+\dfrac{3}{4}a^2+\dfrac{3a^2}{4}}=\dfrac{\sqrt{7}}{2}a\)