Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng.
Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0).
a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\)
b) Tìm điểm D đối xứng của A qua C
Bài 4: Trong mặt phẳng Oxy, cho ba...
Đọc tiếp
Bài 1: Cho tam giác ABC có A(4;3), B(-1;2), C(3;-2). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Bài 2: Trong mặt phaửng Oxy, cho ba điểm A(-1;1), B(1;3), C(-2;0). Chứng minh rằng ba điểm A, B, C thẳng hàng.
Bài 3: Trong mặt phẳng Oxy, cho 2 điểm A(3;-5), B(1;0).
a) Tìm tọa độ điểm C sao cho: \(\overrightarrow{OC}\) \(=-3\overrightarrow{AB}\)
b) Tìm điểm D đối xứng của A qua C
Bài 4: Trong mặt phẳng Oxy, cho ba điểm A(1;-2), B(0;4), C(3;2)
a) Tìm tọa độ các vector \(\overrightarrow{AB},\overrightarrow{AC},\overrightarrow{BC}\)
b) Tìm tọa độ trung điểm I của đoạn AB
c) Tìm tọa độ điểm M sao cho: \(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\)
d) Tìm tọa độ điểm N sao cho: \(\overrightarrow{AN}+2\overrightarrow{BN}-4\overrightarrow{CN}=\overrightarrow{0}\)
Câu 3:
\(\left|\overrightarrow{AC}+\overrightarrow{AH}\right|=\sqrt{AC^2+AH^2+2\cdot AC\cdot AH\cdot cos30}\)
\(=\sqrt{a^2+\left(\dfrac{a\sqrt{3}}{2}\right)^2+2\cdot a\cdot\dfrac{a\sqrt{3}}{2}\cdot\dfrac{\sqrt{3}}{2}}\)
\(=\sqrt{a^2+\dfrac{3}{4}a^2+\dfrac{3a^2}{4}}=\dfrac{\sqrt{7}}{2}a\)