K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AECF có 

AE//CF

AE=CF

Do đó: AECF là hình bình hành

Xét tứ giác AEFD có

AE//FD

AE=FD

Do đó: AEFD là hình bình hành

Xét tứ giác BEFC có

BE//FC

BE=FC
Do đó: BEFC là hình bình hành

Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

b: Ta có:ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Ta có: BEDF là hình bình hành

nên BD cắt EF tại trung điểm của mỗi đường

mà O là trung điểm của BD

nên O là trung điểm của FE

hay F,O,E thẳng hàng

18 tháng 9 2016

làm đc mỗi câu b :))

AEFC là hình bình hành ( tự cm nhá :) )

=> đường chéo AC giao đường chéo EF tại trung điểm của EF

câu a => đường chéo MN giao đường chéo EF tại trung điểm của EF

=> ĐPCM

câu b thui, câu a lằng nhằng quá lười nghĩ thông cảm nhé

19 tháng 10 2016

gianroi

18 tháng 10 2019

a) Xét tam giác ABF có:

E là trung điểm của AB

P là trung điểm của BF

⇒ EP là đường trung bình của ΔABF

⇒ EP // AF và EP = AF/2

M là trung điểm AF (gt)

⇒ MF = AF/2

Do đó EP // MF và EP = MF. Vậy EPFM là hình bình hành

I là giao điểm của hai đường chéo MP và EF nên I là trung điểm của MP.

b) Do tứ giác EPFM là hình bình hành nên I là trung điểm của EF.

Chứng minh tương tự ta có ENFQ là hình bình hành mà I là trung điểm của EF ⇒ I là trung điểm của NQ (2)

Từ (1) và (2) ⇒ MNPQ là hình bình hành (hai đường chéo cắt nhau tại trung điểm mỗi đường).

13 tháng 12 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi O là giao điểm của AC và EF

Tứ giác AECF là hình bình hành ⇒ OE = OF

Tứ giác EMFN là hình bình hành nên hai đường chéo cắt nhau tại trung điểm của mỗi đường.

Suy ra: MN đi qua trung điểm O của EF.

Vậy AC, EF, MN đồng quy tại O.