Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin phép ad cho em tách ạ,nguyên 1 câu khá là dài,hihi
a) Xét Tứ giác DEBF ta có:
EB // DF ( vì AB // CD )
EB = DF ( vì = \(\frac{1}{2}\) AB và DC ( AB =DC) ) [ nếu không đúng cách trình bày thì bạn có thể sửa lại câu từ cho hay]
\(\Rightarrow\)tứ giác DEBF là hbh
Mình sửa lại đề 1 chút: AC=a; BD=b
d) \(MN=\frac{AC}{3}=\frac{a}{2}\)
d(E,MN)=\(\frac{BD}{2}=\frac{b}{2}\)
\(\Rightarrow S_{MENF}=S_{MEN}+S_{MEF}=\frac{1}{2}\cdot2\cdot MN\cdot d\left(E,MN\right)\)
\(=2S_{MEN}=\frac{a}{3}\cdot\frac{b}{2}=\frac{ab}{6}\)
Hình em tự vẽ nha.
a, ABCD là hình bình hành \(\Rightarrow\)2 đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường
Tứ giác AHCK có 2 đường chéo AC và HK tại trung điểm của mỗi đường \(\Rightarrow\)AHCK là hình bình hành
b, AHCK là hình bình hành \(\Rightarrow AH//CK\Leftrightarrow AM//NC\)
Tứ giác AMCN có: \(AN//MC\left(gt\right)\)
\(AM//NC\left(cmt\right)\)
\(\Rightarrow\)AMCN là hình bình hành \(\Rightarrow\)2 đường chéo AC và MN cắt nhau tại trung điểm O của AC \(\Rightarrow\)O là trung điểm của MN
Bài 3:
a: Ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Hình thang BDEC có \(\widehat{DBC}=\widehat{ECB}\)
nên BDEC là hình thang cân
b: Để BD=DE=EC thì BD=DE và DE=EC
BD=DE thì ΔDBE cân tại D
=>\(\widehat{DBE}=\widehat{DEB}\)
mà \(\widehat{DEB}=\widehat{EBC}\)(hai góc so le trong, DE//BC)
nên \(\widehat{DBE}=\widehat{EBC}\)
=>\(\widehat{ABE}=\widehat{EBC}\)
=>BE là phân giác của góc ABC
=>E là chân đường phân giác kẻ từ B xuống AC
Xét ΔEDC có ED=EC
nên ΔEDC cân tại E
=>\(\widehat{EDC}=\widehat{ECD}\)
mà \(\widehat{EDC}=\widehat{DCB}\)(hai góc so le trong, DE//BC)
nên \(\widehat{ECD}=\widehat{DCB}\)
=>\(\widehat{ACD}=\widehat{BCD}\)
=>CD là phân giác của góc ACB
=>D là chân đường phân giác từ C kẻ xuống AB
Bài 2:
a: Ta có: ABCD là hình bình hành
=>AB//CD và AB=CD(1)
Ta có: M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}\left(2\right)\)
Ta có: N là trung điểm của CD
=>\(NC=ND=\dfrac{CD}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=MB=NC=ND
Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
b: Ta có AMCN là hình bình hành
=>AN//CM
Xét ΔDFC có
N là trung điểm của DC
NE//FC
Do đó: E là trung điểm của DF
=>DE=EF(4)
Xét ΔABE có
M là trung điểm của BA
MF//AE
Do đó: F là trung điểm của BE
=>BF=FE(5)
Từ (4) và (5) suy ra BF=FE=ED