Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD có
M,Q lần lượt là tđiểm của AB và AD
nên MQ là đường trung bình
=>MQ//BD và MQ=BD/2(1)
Xét ΔBCD có
N,P lần lượt là trung điểm của CB và CD
nên NP là đường trung bình
=>NP//BD và NP=BD/2(2)
Từ (1) và (2) suy a MQ//NP và MQ=NP
=>MNPQ là hình bình hành
b: Xét ΔABC có
M,N lần lượt là trung điểm của BA và BC
nên MN là đường trung bình
=>MN=AC/2 và MN//AC
Để MNPQ là hình chữ nhật thì MN vuông góc với MQ
=>AC vuông góc với BD
Cô hướng dẫn nhé.
a.MN, PQ cùng song song và bằng một nửa AC, vậy MNPQ là hình bình hành.
b. Em nhìn đc nhé.
c. Cho các điểm như hình vẽ. Kẻ CE, PF vuông góc BD. Khi đó ta có CE = 2DF.
Ta có: \(\frac{S_{PNHG}}{S_{DCB}}=\frac{GH.PF}{\frac{1}{2}AC.CE}=\frac{GH.PF}{PN.CE}=\frac{PF}{CE}=\frac{1}{2}\)
Tương tự \(\frac{S_{MQGH}}{S_{ABD}}=\frac{1}{2}\Rightarrow\frac{S_{MNPQ}}{S_{ABCD}}=\frac{1}{2}\)
Từ đó ta tìm đc \(S_{ABCD}=32\)