K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2019

A B C D K F E O M N H I

+ Kẻ AH // FE // CI   \(\left(H,I\in BD\right)\)

\(\Delta AOH=\Delta COI\left(g.c.g\right)\)

\(\Rightarrow OH=OI\)

\(\Rightarrow BH+BI=BH+BO+OI\)

\(=BH+OH+BO=2BO=4BM\)

+ Xét \(\Delta ABH\)có : AH // FM theo định lí Ta - lét ta có : 

\(\frac{BA}{BF}=\frac{BH}{BM}\left(1\right)\)

+ Xét \(\Delta BCI\) có CI // ME theo định lí Ta - lét ta có : 

\(\frac{BC}{BE}=\frac{BI}{BM}\left(2\right)\)

+ Từ (1) và (2) \(\Rightarrow\)

\(\frac{BA}{BF}+\frac{BC}{BE}=\frac{BH}{BM}+\frac{BI}{BM}=\frac{BH+BI}{BM}=\frac{4BM}{BM}=4\)

Chúc bạn học tốt !!!

AH
Akai Haruma
Giáo viên
13 tháng 10 2023

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.

 giups minh cau 1d, 2c , cam on nhieu1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.a) Chứng minh AEHF nội tiếpb) Chứng minh EC là tia phân giác của góc DEFc) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MDd) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của...
Đọc tiếp

 giups minh cau 1d, 2c , cam on nhieu

1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.

a) Chứng minh AEHF nội tiếp

b) Chứng minh EC là tia phân giác của góc DEF

c) Đường thẳng  EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD

d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)

 e) Đường thẳng qua D  song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.

2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE. 
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC 
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE 
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ. 
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng 

0

a: Xét (O) có 

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

Xét ΔABC có 

BE là đường cao

CF là đường cao

BE cắt CF tại H

Do đó: AH⊥BC

hay AF⊥BC

NV
10 tháng 8 2021

c.

K thuộc AD nên BC song song DK

Áp dụng định lý Talet: \(\dfrac{BN}{KN}=\dfrac{CN}{DN}=1\Rightarrow BN=KN\) hay N là trung điểm BK

\(\Rightarrow\) BCKD là hình bình hành (tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Theo câu b, E, M, N thẳng hàng nên Q nằm trên MN (1)

Mà MN là đường trung bình của hình thang ABCD

\(\Rightarrow MN||AD\Rightarrow MN\perp AB\) (2)

Mà M là trung điểm AB (3)

(2);(3) \(\Rightarrow\) MN là trung trực AB (4)

(1);(4) \(\Rightarrow QB=QA\)

d.

Hạ CH vuông góc AD

Trong tam giác vuông CHK: \(cosKAC=\dfrac{AH}{AC}\Rightarrow AH=AC.cos\widehat{KAC}\)

Pitago: \(CH^2+AH^2=AC^2\)

Do đó: \(CK^2=CH^2+HK^2=CH^2+\left(AK-AH\right)^2=CH^2+AH^2+AK^2-2AK.AH\)

\(=AC^2+AK^2-2AK.AC.cos\widehat{KAC}\) (đpcm)

NV
10 tháng 8 2021

undefined