Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AO là đường trung trực của BC
b: AO là đường trung trực của BC
=>AO\(\perp\)BC tại H và H là trung điểm của BC
Xét (O) có
\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE
\(\widehat{EDB}\) là góc nội tiếp chắn cung BE
Do đó: \(\widehat{ABE}=\widehat{EDB}\)
Xét ΔABE và ΔADB có
\(\widehat{ABE}=\widehat{ADB}\)
\(\widehat{BAE}\) chung
Do đó: ΔABE đồng dạng với ΔADB
=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)
=>\(AB^2=AD\cdot AE\)
c: Xét (O) có
MB,ME là các tiếp tuyến
Do đó: MB=ME
Xét (O) có
NE,NC là các tiếp tuyến
Do đó: NE=NC
Chu vi tam giác AMN là:
\(AM+MN+AN\)
\(=AM+ME+EN+AN\)
\(=AM+MB+AN+NC\)
=AB+AC
câu c thì cơ bản là tui chứng minh hai tam giác bằng nhau (c-c-c), xong rồi tui suy ra hai góc bằng nhau
a: Xét (O) có
AB,AC là tiếp tuyến
nên AB=AC
=>ΔABC cân tại A
mà OB=OC
nên OA là trung trực của BC
b: ΔOEF cân tại O
mà OG là trung tuyến
nên OG vuông góc với EF
Xét ΔAGO vuông tại G và ΔHDO vuông tại D có
góc AOG chung
Do đó: ΔAGO đồng dạng với ΔHDO
c: ΔAGO đồng dạng vơi ΔHDO
=>OA/OH=OG/OD
=>OA*OD=OH*OG
=>OH*OG=OE^2
=>ΔHEO vuông tại E
=>HE là tiếp tuyên của (O)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
b: Xét (O) có
ΔDEC nội tiếp
CD là đường kính
Do đó: ΔDEC vuông tại E
Xét ΔACD vuông tại C có CE là đường cao
nên \(AC^2=AE\cdot AD=AB^2\)