Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔHAB có
E là trung điểm của HA
F là trung điểm của HB
Do đó: EF là đường trung bình
=>EF//AB và EF=AB/2
hay EF//CD và EF=CD/2
mà G là trung điểm của CD
nên EF=CG và EF//CG
=>EFCG là hình bình hành
góc DCA=góc DBA
góc AKB=góc AHB=90 độ
=>AHBK nội tiếp
=>góc AKB+góc AHB=180 độ
=>góc AKH=góc ABH=góc HCD
góc DAC=góc DBC=góc DIH
=>180 độ-góc DAC=180 độ-góc DIH
=>góc CAK=góc HIC
=>góc HAK=góc HIC
mà góc AKH=góc HCI
nên ΔHAK đồng dạng với ΔHIC
=>góc AHK=góc IHC
=>góc IHC+góc KHC=180 độ
=>góc KHI=180 độ
=>K,I,H thẳng hàng
a: Sửa đề: AD=6cm
BC=AD=6cm
CD=AB=8cm
BD=căn 6^2+8^2=10cm
Xét ΔBCD vuông tại C có sin DBC=DC/BD=8/10=4/5
nên góc DBC=53 độ
=>góc BDC=37 độ
b: CH=6*8/10=4,8cm
BH=BC^2/BD=6^2/10=3,6cm