Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mik làm câu a thôi
a) Tia phân giác của góc D cắt AB ở E ta có :
góc DEA = góc EDC ( so le trong )
mà góc ADE = góc EDC nên góc DEA = góc EDA
Tam giác ADE cân ở A do đó ...............
a: Gọi F là trung điểm của DC
E là trung điểm của AB
=>\(AE=EB=\dfrac{AB}{2}\)
F là trung điểm của DC
=>\(FD=FC=\dfrac{DC}{2}\)
mà AB=DC
nên AE=EB=CF=FD=AB/2
mà \(AD=BC=\dfrac{AB}{2}\)
nên \(AE=EB=CF=FD=AD=BC\)
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
Hình bình hành AEFD có EA=AD
nên AEFD là hình thoi
=>EF=FD=DC/2
Xét ΔEDC có
EF là đường trung tuyến
\(EF=\dfrac{DC}{2}\)
Do đó: ΔEDC vuông tại E
=>DE\(\perp\)EC
b:
ABCD là hình bình hành
=>\(\widehat{BAD}+\widehat{ABC}=180^0\)
=>\(\widehat{ABC}=180^0-120^0=60^0\)
Xét ΔBEC có BE=BC và \(\widehat{B}=60^0\)
nên ΔBEC đều
=>\(\widehat{BEC}=60^0\)
\(\widehat{BEC}+\widehat{AEC}=180^0\)(hai góc kề bù)
=>\(\widehat{AEC}+60^0=180^0\)
=>\(\widehat{AEC}=180^0-60^0=120^0\)
Xét tứ giác AECD có
AE//CD
nên AECD là hình thang
Hình thang AECD có \(\widehat{EAD}=\widehat{AEC}\)
nên AECD là hình thang cân
a)Ta có gAMD = gMDC (so le trong), mà gMDC = gADM (gt) => gADM = g AMD
=> tg ADM cân tai A => AD = AM = AB/2 hay AB = 2AD
b) Từ A hạ AI v^g góc với DM => I là trung điểm của DM và AI là phân giác của góc A (tc tg cân)
=> DM = 2 DI (1) và g DAI = 120/2 = 60 độ
Mặt khác gD + gA = 180 độ ( hai góc trong cùng phía, AB // DC) mà gA = 120 độ => gD = 60 độ
tg v^g DAI và tg v^g ADH có gDAI = gADH = 60 độ, AD là cạnh huyền chung
=> tg DAI = tg ADH ( cạnh huyền, góc nhọn)
=> AH = DI (2)
Từ (1) và (2) => DM = 2 AH
c) Gọi N là trung điểm của DC do Dc= AB nên AD = DC/ 2= DN => tg ADN cân tại D mà gD = 60 độ => tg ADN đều => AN = AD = DC/ 2
tg ADC có đường trung tuyến AN = DC/2 => tg ADC v^g tại A hay DA v^g góc với AC
a,Vì góc A =120 độ suy ra gócB=60 độ
A,vì DE là tia phân giác của góc D
Suy ra gócADE=gócCDE (1)
Mà góc CDE = góc AED(so le trong) (2)
Từ 1 và 2 suy ra tam giác ADE cân tại A
Suy ra AD=AE mà theo đề bài AD=1/2AB và AD=AE(chứng minh trên)
Suy ra AD=AE=EB .Vậy E là trung điểm của AB(ĐPCM)
b,Nối Cvới E
Xét tam giác ABC có :EB=BC suy ra tam giác BEC cân tại Bvà góc B=60 độ
Suy ra tam giác BEC là tam giác đều
Suy ra CE=EB=AE
Suy ra tam giác ABC là tam giác vuông tại góc ACB(tam giác có đường trung tuyến ứng với cạnh huyền và bằng ½ cạnh hyuền thì đó là tam giác vuông)(ĐPCM)
a) Ta có:
+ ABCD là hình bình hành ⇒ AB // CD ⇒ (Hai góc đồng vị) (1)
+ DE là tia phân giác của góc D
Mà hai góc này ở vị trí đồng vị ⇒ DE // BF (đpcm)
b) Tứ giác DEBF có:
DE // BF (chứng minh ở câu a)
BE // DF (vì AB // CD)
⇒ DEBF là hình bình hành.
Bài 2:
AK=AB/2
CI=CD/2
mà AB=CD
nên AK=CI
Xét tứ giác AKCI có
AK//CI
AK=CI
Do đó: AKCI là hình bình hành
=>AC cắt KI tại trung điểm của mỗi đường(1)
ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường(2)
Từ (1) và (2) suy ra AC,KI,BD đồng quy
Bài 1:
a: \(\widehat{ADE}=\widehat{EDF}=\dfrac{1}{2}\cdot\widehat{ADC}\)
\(\widehat{ABF}=\widehat{CBF}=\dfrac{1}{2}\cdot\widehat{ABC}\)
mà \(\widehat{ADC}=\widehat{ABC}\)
nên \(\widehat{ADE}=\widehat{EDF}=\widehat{ABF}=\widehat{CBF}\)
Xét ΔEAD và ΔFCB có
\(\widehat{A}=\widehat{C}\)
AD=CB
\(\widehat{EDA}=\widehat{FBC}\)
Do đó: ΔEAD=ΔFCB
=>\(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{EDF}=\widehat{CFB}\)
mà hai góc này đồng vị
nên DE//BF
b: Xét tứ giác DEBF có
DE//BF
BE//DF
Do đó: DEBF là hình bình hành
a/
gọi giao điểm cú phân giác góc D với AB là E
vì ABCD là hbh => \(\widehat{DAE}+\widehat{ADC}=180\)
MÀ \(\widehat{DAE}=120\)=> \(\widehat{ADC}=60\)
lại có DE là phân giác của \(\widehat{ADC}\)
=> \(\widehat{ADE}=30\)
xét tam giác ADE có \(\widehat{ADE}+\widehat{AED}+\widehat{DAE}=180\)
<=> \(30+\widehat{AED}+120=180\)
<=> \(\widehat{AED}=30\)
MÀ \(\widehat{ADE}=30\)=> tam giác \(ADE\) cân tại A
=> AD=AE
mà AB = 2AD => AB=2AE
=> AE = 1/2 AB
=> E là trung điểm của AB ( đpcm )
b/
vì ABCD là hbh => \(\widehat{ADC}=\widehat{ABC}=60\)
VÌ \(AD=BC,AB=2AD,AB=2EB\)
=> \(EB=BC\)
=> tam giác EBC cân tại B
=> \(\widehat{BEC}=\widehat{BCE}\) \(=\frac{180-60}{2}=60\)
VÌ \(\widehat{AEB}\) là góc tù => \(\widehat{AEB}=180\)
=> \(\widehat{AED}+\widehat{DEC}+\widehat{BEC}=180\)
=> \(30+\widehat{DEC}+60=180\)
=> \(\widehat{DEC}=90\)
=> \(DE\perp EC\) ( đpcm )
c/
vì AB // CD ( ABCD là hbh )
=> AE // CD => AECD là hình thang \(\left(1\right)\)
ta có \(\widehat{AEC}=\widehat{AED}+\widehat{DEC}=30+90=120\)
\(\widehat{DAE}=120\left(gt\right)\)
=> \(\widehat{AEC}=\widehat{DAE}\left(=120\right)\left(2\right)\)
TỪ \(\left(1\right),\left(2\right)\)
=> AECD là hình thang cân
CHÚC BN HỌC TỐT