K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2021

a: Xét ΔADM và ΔCBN có 

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

19 tháng 10 2021

a: Xét ΔADM và ΔCBN có

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

31 tháng 10 2021

a: Xét ΔADM và ΔCBN có 

\(\widehat{ADM}=\widehat{CBN}\)

AD=CB

\(\widehat{A}=\widehat{C}\)

Do đó: ΔADM=ΔCBN

Suy ra: AM=CN

31 tháng 10 2021

phần c em để chữ đậm đó ạ chứ phần a em làm cách khác rồi, em cảm ơn ạ

loading...  loading...  

23 tháng 12 2018

a)  Ta có :

\(\hept{\begin{cases}NE\perp DM\\MG\perp BN\end{cases}}\)

\(\Rightarrow DM//BN\)

\(\Rightarrow\widehat{EDN}=\widehat{GBM}\)( sole trong)   (1)

Mà \(\widehat{ADE}=\widehat{EDN}\)(2)

Từ (1) và(2)

\(\Rightarrow\widehat{ADE}=\widehat{GBM}\) 

Lại có : \(DM//BN\left(cmt\right)\)

\(\Rightarrow\widehat{AMD}=\widehat{GBM}\)

\(\Rightarrow\widehat{ADM}=\widehat{AMD}\)

=> Tam giác ADM cân tại A 

\(\Rightarrow AM=AD\left(dpcm\right)\)

b) P/s:  phải là chứng minh tam giác MGB và tam giác NED chớ không phải tam giác MHB bạn ơi .

giải : Xét \(\Delta MGB\)và \(\Delta NED\)ta có :

\(MB=DN\)

\(\widehat{E}=\widehat{G}=90^o\)

\(\widehat{EDN}=\widehat{GBM}\)( câu a )

=> \(\Delta MGB=\Delta NED\)( cạnh huyền - góc nhọn )

c) Vì ABCD là hình bình hành 

\(\Rightarrow BM//DN\)( vì AB // CD )   (1)

Lại có :  \(DM//BN\)( câu a )   (2)

Từ (1)và(2)

=>  MBND là hình bình hành (đpcm)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(DE\), \(BF\) là phân giác (gt)

Suy ra \(\widehat {{\rm{ADE}}} = \widehat {{\rm{EDC}}} = \frac{{\widehat {ADC}}}{2}\); \(\widehat {{\rm{EBF}}} = \widehat {{\rm{CBF}}} = \frac{{\widehat {ABC}}}{2}\) (1)

Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(AB\) // \(CD\) và \(\widehat {ADC} = \widehat {ABC}\) (2)

Suy ra \(\widehat {{\rm{AED}}} = \widehat {{\rm{EDC}}}\) (so le trong) (3)

Từ (1), (2), (3) suy ra \(\widehat {AED} = \widehat {ABF}\)

Mà hai góc ở vị trí đồng vị

Suy ra \(DE\) // \(BF\)

b) Xét tứ giác \(DEBF\) ta có:

\(DE\) // \(BF\) (cmt)

\(BE\) // \(DF\) (do \(AB\) // \(CD\))

Suy ra \(DEBF\) là hình bình hành

28 tháng 10 2016

AB = 3/2 Á? ko phải 1/2 ak

28 tháng 10 2016

??????.:))