Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBFC nội tiếp
BC là đường kính
Do đó: ΔBFC vuông tại F
=>CF vuông góc AB
Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>BE vuông góc AC
Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm
=>AH vuông góc BC tại D
b: Xét tứ giác AFHE có
góc AFH+góc AEH=90+90=180 độ
=>AFHE nội tiếp đường tròn đường kính AH
I là trung điẻm của AH
c:
Xét tứ giác BFHD có
góc BFH+góc BDH=180 độ
=>BFHD nội tiếp
=>góc DFH=góc DBH=góc EBC
góc IFD=góc IFH+góc DFH
=góc IHF+góc EBC
=góc DHC+góc EBC
=90 độ-góc FCB+góc EBC
=90 độ
=>IF là tiếp tuyến của (O)
Xét ΔIFD và ΔIED có
IF=IE
FD=ED
ID chung
=>ΔIFD=ΔIED
=>góc IED=góc IFD=90 độ
=>IE là tiếp tuyến của (O)
a: Xét tứ giác BOCE có \(\widehat{EBO}+\widehat{ECO}=90^0+90^0=180^0\)
nên BOCE là tứ giác nội tiếp đường tròn đường kính EO
Tâm là trung điểm của EO
Bán kính là EO/2
b: Xét (O) có
DA,DC là các tiếp tuyến
Do đó: DA=DC
=>D nằm trên đường trung trực của AC
Xét (O) có
DA,DC là các tiếp tuyến
Do đó: OD là phân giác của góc AOC
=>\(\widehat{AOC}=2\cdot\widehat{COD}\)
Xét (O) có
EC,EB là các tiếp tuyến
Do đó: OE là phân giác của góc COB
=>\(\widehat{COB}=2\cdot\widehat{COE}\)
Xét (O) có
EC,EB là các tiếp tuyến
Do đó: EC=EB
Ta có: \(\widehat{COA}+\widehat{COB}=180^0\)
=>\(2\cdot\left(\widehat{COD}+\widehat{COE}\right)=180^0\)
=>\(2\cdot\widehat{DOE}=180^0\)
=>\(\widehat{DOE}=90^0\)
Xét ΔDOE vuông tại O có OC là đường cao
nên \(CD\cdot CE=OC^2\)
mà CD=DA và CE=EB
nên \(DA\cdot EB=OC^2\)
=>\(4\cdot DA\cdot EB=4\cdot OC^2=\left(2\cdot OC\right)^2=AB^2\)