Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết suy ra khoảng cách giữa 2 đường thẳng song song AB, CD bằng 4.
Từ đó, do A, B thuộc Ox nên C(c;4), D(d;4)
Vì 2 đường chéo AC, BD cắt nhau tại I nằm trên đường thẳng y=x nên ta có hệ :
\(\begin{cases}2x=c+1=d+2\\2x=0+4\end{cases}\)
Từ đó tìm được x=2, c=3, d=2.
Vậy C(3;4), D(2;4)
cho mình hỏi hình bình hành có diện tích bằng 4 thì sao suy ra được khoảng cách giữa 2 đường thẳng song song =4
a) Gọi tọa độ của điểm D là \(\left( {x;y} \right)\) ta có: \(\overrightarrow {AB} = \left( {1;3} \right)\), \(\overrightarrow {DC} = \left( {5 - x;5 - y} \right)\)
Để ABCD là hình bình hành thì \(\overrightarrow {AB} \)= \(\overrightarrow {DC} \)
Suy ra \(\left\{ \begin{array}{l}5 - x = 1\\5 - y = 3\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 4\\y = 2\end{array} \right.\)
Vậy để ABCD là hình bình hành thì tọa độ điểm D là \(D\left( {4;2} \right)\)
b) Gọi M là giao điểm của hai đường chéo, suy ra M là trung điểm của AC
Suy ra: \({x_M} = \frac{{{x_A} + {x_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2};{y_M} = \frac{{{y_A} + {y_C}}}{2} = \frac{{2 + 5}}{2} = \frac{7}{2}\)
Vậy tọa đọ giao điểm của hai đường chéo hình bình hành ABCD là \(M\left( {\frac{7}{2};\frac{7}{2}} \right)\)
c) Ta có: \(\overrightarrow {AB} = \left( {1;3} \right),\overrightarrow {AC} = \left( {3;3} \right),\overrightarrow {BC} = \left( {2;0} \right)\)
Suy ra: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{1^2} + {3^2}} = \sqrt {10} ,AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \)
\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{2^2} + {0^2}} = 2\)
\(\begin{array}{l}\cos A = \cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{AB.AC}} = \frac{{1.3 + 3.3}}{{\sqrt {10} .3\sqrt 2 }} = \frac{{2\sqrt 5 }}{5} \Rightarrow \widehat A \approx 26^\circ 33'\\\cos B = \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {BA} .\overrightarrow {BC} }}{{BA.BC}} = \frac{{\left( { - 1} \right).2 + \left( { - 3} \right)0}}{{\sqrt {10} .2}} = - \frac{{\sqrt {10} }}{{10}} \Rightarrow \widehat B = 108^\circ 26'\\\widehat C = 180^\circ - \widehat A - \widehat B = 180^\circ - 26^\circ 33' - 108^\circ 26' = 45^\circ 1'\end{array}\)
a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)
Vì -1/-5<>2/3
nên A,B,C ko thẳng hàng
=>A,B,C là ba đỉnh của 1 tam giác
b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)
\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)
\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)
\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)
\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)
=>sinBAC=0,54
\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)
c: ADBC là hình bình hành
=>vecto AD=vecto CB
=>x-3=2-(-2) và y+1=1-2
=>x-3=2+2 và y=-2
=>x=7 và y=-2
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
Thay \(\left(-2;2\right)\) vào 2 pt 2 cạnh đều ko thỏa \(\Rightarrow\) 2 cạnh còn lại đi qua (-2;2)
2 cạnh đã cho ban đầu có vtpt lần lượt là (1;-1) và (1;3), do đó 2 cạnh còn lại cũng lần lượt nhận (1;-1) cà (1;3) là vtpt (do các cặp cạnh đối của hình bình hành song song)
Phương trình 2 cạnh còn lại là:
\(1\left(x+2\right)-1\left(y-2\right)=0\Leftrightarrow x-y+4=0\)
\(1\left(x+2\right)+3\left(y-2\right)=0\Leftrightarrow x+3y-4=0\)