K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\overrightarrow{AB}=\left(-1;2\right);\overrightarrow{AC}=\left(-5;3\right);\overrightarrow{BC}=\left(-4;1\right)\)

Vì -1/-5<>2/3

nên A,B,C ko thẳng hàng

=>A,B,C là ba đỉnh của 1 tam giác

b: \(AB=\sqrt{\left(-1\right)^2+2^2}=\sqrt{5}\)

\(AC=\sqrt{\left(-5\right)^2+3^2}=\sqrt{34}\)

\(BC=\sqrt{\left(-4\right)^2+1^2}=\sqrt{17}\)

\(C=\sqrt{5}+\sqrt{34}+\sqrt{17}\left(cm\right)\)

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\simeq0,844\)

=>sinBAC=0,54

\(S_{ABC}=\dfrac{1}{2}\cdot\sqrt{5}\cdot\sqrt{34}\cdot0.36\simeq2.35\left(cm^2\right)\)

c: ADBC là hình bình hành

=>vecto AD=vecto CB

=>x-3=2-(-2) và y+1=1-2

=>x-3=2+2 và y=-2

=>x=7 và y=-2

 

17 tháng 5 2017

TenAnh1 TenAnh1 A = (-4.34, -5.84) A = (-4.34, -5.84) A = (-4.34, -5.84) B = (11.02, -5.84) B = (11.02, -5.84) B = (11.02, -5.84)
Hình thoi nhận O là tâm đối xứng.
\(\left|x_A\right|=\left|x_C\right|=2AC\)\(\Rightarrow\left|x_A\right|=\left|x_C\right|=8:2=4\).
Do \(\overrightarrow{OC}\)\(\overrightarrow{i}\) cùng hướng nên \(x_C=4;x_A=-4\).
A, C nằm trên trục hoành nên \(y_A=y_C=0\).
Vậy \(A\left(-4;0\right);C\left(4;0\right)\).
\(\left|y_B\right|=\left|y_D\right|=2BD\)\(\Rightarrow\left|y_B\right|=\left|y_D\right|=6:2=3\).
Do \(\overrightarrow{OB}\)\(\overrightarrow{j}\) cùng hướng nên \(y_B=3;y_D=-3\).
B, D nằm trên trục tung nên \(x_B=x_D=0\).
Vậy \(B\left(0;3\right);D\left(0;-3\right)\).
b) \(x_I=\dfrac{x_B+x_C}{2}=\dfrac{0+4}{2}=2\); \(y_I=\dfrac{y_B+y_C}{2}=\dfrac{3+0}{2}=\dfrac{3}{2}\).
Vậy \(I\left(2;\dfrac{3}{2}\right)\).
\(x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-4+0+4}{3}=0\).
\(y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{0+3+0}{3}=1\).
Vậy \(G\left(0;1\right)\).
c) I' đối xứng với I qua tâm O nên \(I'\left(-2;-\dfrac{3}{2}\right)\).
d) \(\overrightarrow{AC}\left(8;0\right);\overrightarrow{BD}\left(0;-6\right);\overrightarrow{BC}\left(4;-3\right)\).

NV
23 tháng 12 2022

a.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng

\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác

b.

Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)

Gọi G là trọng tâm tam giác, theo công thức trọng tâm: 

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)

c.

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)

\(\Rightarrow D\left(5;-5\right)\)

11 tháng 8 2015

a) \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\) . Vì \(\frac{2}{2}\ne\frac{2}{-2}\) nên \(\overrightarrow{AB};\overrightarrow{AC}\) không cùng phương => A; B; C không thẳng hàng

b) Gọi G là trọng tâm tam giác ABC => \(\begin{cases}x_G=\frac{x_A+x_B+x_C}{3}=\frac{-1+1+1}{3}=\frac{1}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=\frac{1+3+\left(-1\right)}{3}=1\end{cases}\)=> G(1/3; 1)

c) ABCD là hình bình hành <=> \(\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\begin{cases}x_D-x_A=x_C-x_B\\y_D-y_A=y_C-y_B\end{cases}\) <=> \(\begin{cases}x_D+1=0\\y_D-1=-4\end{cases}\) <=> \(\begin{cases}x_D=-1\\y_D=-3\end{cases}\) Vậy D (-1;-3)

d)  \(\overrightarrow{AB}\left(2;2\right);\overrightarrow{AC}\left(2;-2\right)\)

=> \(\overrightarrow{AB}.\overrightarrow{AC}=2.2+2.\left(-2\right)=0\)  =>  \(\overrightarrow{AB};\overrightarrow{AC}\) vuông góc với nhau => tam giác ABC vuông tại A

Ta có: AB2 = 2+ 22 = 8 ; AC2 = 22 + (-2)2 = 8 => AB = AC => Tam giác ABC cân tại A

vậy...

e) Có thể đề của bạn là tam giác ABE vuông cân tại E  ( Khi đó giải điều kiện: EA = EB và vec tơ EA . Vec tơ EB = 0)

g) M nằm trên Ox => M (m; 0)

Tam giác OMA cân tại O <=> OM = OA  Hay OM2 = OA<=> m= (-1)+ 12 => m2 = 2 <=> m = \(\sqrt{2}\) hoặc m = -  \(\sqrt{2}\)

Vậy M (\(\sqrt{2}\); 0) ; M (-\(\sqrt{2}\); 0 )

26 tháng 4 2017


A C B M G

a)Theo bài ra => Tam giác ABC vuông cân ở A

M(1;-1) là trung điểm BC và G\(\left(\dfrac{2}{3};0\right)\) là trọng tâm

=>\(\overrightarrow{AM}=\dfrac{2}{3}\overrightarrow{AG}\)

Giả sử A có tọa độ (a;b)

=>\(\left\{{}\begin{matrix}1-a=\dfrac{2}{3}\left(\dfrac{2}{3}-a\right)\\-1-b=-\dfrac{2}{3}b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{3}\\b=-3\end{matrix}\right.\)\(\Rightarrow A\left(\dfrac{5}{3};-3\right)\)

b)Do tam giác ABC vuông cân ở A=>GM vuông góc với BC

Ta có: \(\overrightarrow{GM}=\left(\dfrac{1}{3};-1\right)\)=>VTPT của đường thẳng BC là: \(\overrightarrow{n}=\left(1;-3\right)\) có M(1;-1) thuộc BC

=>phương trình đường thẳng BC:

1(x-1)-3(y+1)=0

hay x-3y-4=0

=> phương trình tham số của BC:\(\left\{{}\begin{matrix}x=3t+4\\y=t\end{matrix}\right.\)

=> tồn tại số thực t để B(3t+4;t) thuộc đường thẳng BC

MB=MA(do tam giác ABC vuông cân ở A,M là trung điểm BC)

=>\(\overrightarrow{MB}^2=\overrightarrow{MA}^2\)

=>(3t+3)2+(t+1)2=\(\left(\dfrac{2}{3}\right)^2+\left(-2\right)^2=\dfrac{40}{9}\)

=> \(t=-\dfrac{1}{3}\)hoặc \(t=-\dfrac{5}{3}\)

TH1: \(t=-\dfrac{1}{3}\)=>B\(\left(3;-\dfrac{1}{3}\right)\) ,do M(1;-1) là trung điểm BC=>C\(\left(-1;-\dfrac{5}{3}\right)\)

TH2:\(t=-\dfrac{5}{3}\)=>B\(\left(-1;-\dfrac{5}{3}\right)\),do M(1;-1) là trung điểm BC=>C\(\left(3;-\dfrac{1}{3}\right)\)

c) Tam giác ABC vuông cân ở A=>M(1;-1) là tâm đường tròn ngoại tiếp và MA là bán kính=>R2=MA2=\(\dfrac{40}{9}\)

Phương trình đường tròn ngoại tiếp tam giác ABC:

(C): \(\left(x-1\right)^2+\left(y+1\right)^2=\dfrac{40}{9}\)

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng