K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2020

a) Phần thuận

     Gọi O là điểm đối xứng với D qua C thì O là một điểm cố định

Tứ giác ABOC có AB // OC; AB = OC (vì cùng bằng CD) nên ABOC là hình bình hành 

⟹ OB = AC = 2cm. Điểm B cách điểm O cố định một khoảng 2cm nên điểm B nằm trên đường tròn tâm O bán kính 2cm.

Giới hạn: Vì B, C, D không thẳng hàng nên B nằm trên đường tròn tâm O bán kính 2cm trừ giao điểm của đường tròn này với đường thẳng CD.

b) Phần đảo

     Lấy điểm B bất kì trên đường tròn tâm O bán kính 2cm (trừ giao điểm của đường tròn này với đường thẳng CD). Suy ra OB = 2cm. Vẽ hình bình hành ABCD. Ta chứng minh hình bình hành có AC = 2cm

Thật vậy, AB // CD và AB = CD ⟹ AB // CO và AB = CO. Do đó tứ giác ABOC là hình bình hành, suy ra AC = OB = 2cm

c) Kết luận

Vậy quỹ tích của điểm B là đường tròn tâm O bán kính 2cm, trừ giao điểm của đường tròn này với đường thẳng CD.

28 tháng 1 2018

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của ∆ ABD

⇒ KI = \(\dfrac{1}{2}AB=\dfrac{1}{2}.2\) = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K ; 1 cm)


30 tháng 11 2019

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có : S = a.h

Khi đó ta có: S = 4.2 = 8 c m 2 .

Chọn đáp án B.

2 tháng 6 2017

Bài tập: Diện tích hình thang | Lý thuyết và Bài tập Toán 8 có đáp án

Ta có : S = a.h

Khi đó ta có: S = 4.2 = 8  c m 2 .

Chọn đáp án B. 

17 tháng 1 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi K là trung điểm của cạnh AD.

ta có AD cố định nên điểm K cố định.

Trong ∆ ABD ta có:

IB = ID (tính chất hình bình hành)

KA = KD (theo cách vẽ)

nên KI là đường trung bình của  ∆ ABD

⇒ KI = 1/2 AB = 1/2.2 = 1 (cm) (tính chất đường trung bình của tam giác)

B và C thay đổi thì I thay đổi luôn cách điểm K cố định một khoảng không đổi nên I chuyển động trên (K; 1 cm)

10 tháng 7 2017

SABCD = AH.CD = 4.3 = 12(cm2)

Vì M là trung điểm của AB nên AM = 1 2 AB =  1 2 .4 = 2(cm)

Ta có chiều cao từ đỉnh D đến cạnh AM của tam giác ADM bằng chiều cao AH của hình bình hành.

=> SADM = 1 2 AH.AM =  1 2 .3.2 = 3(cm2)

Đáp án cần chọn là: A

12 tháng 2 2020

Giải thích các bước giải:

Gọi AH là đg cao từ A xuống cạnh CD

a, diện h hbh=AHxCD=12.16=192 

b,M trung điểm AB nên AM=16:2=8cm

vì ABCD là hbh nên đường cao từ D xuống AB= AH=12cm

do đó diện tích tam giác ADM=12x8:2=48

c, Xét tam giác ANM và CND

vì AM//CD nên CDAM=DNMN=12CDAM=DNMN=12 suy ra DN=2NM

d, vì DN=2NM nên chiều cao từ D xuống AM = 3 từ N xuống AM=> chiều cao từ N xuống AM=12:3=4cm

suy ra diện tích AMN=AMx4:2=16