Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Bài 1
a) Xét tam giác BCD có BM=MD(gt), BN=NC(gt) => MN là đg` TB => MN// DC => MN// DE(1)
và MN=1/2DC => MN= DE(2)
từ (1)và (2) => MNED là hbh
b) MNED là hbh(câu a) => MD//NE => ADM= DEN(đồng vị)
Xét tam giác ABD vg tại A có BM=DM=> AM là trung tuyến => AM=1/2BD= MD
=> tam giác ADM cân tại M => MDA = DAM
=> DEN= MAD (3)
MN//DE=> MN//AE => AMNE là hình thang (4)
từ (3)và (4) => AMNE là hình thang cân
c) để MNED là hình thoi \Leftrightarrow MNED là hbh có MD=DE \Leftrightarrow 1/2BD=1/2CD \Leftrightarrow BD = CD \Leftrightarrow tam giác BCD cân tại D \Leftrightarrow DBC=góc C \Leftrightarrow góc C=1/2góc B\Leftrightarrow góc C=2góc B
Vậy để MNED là hình thoi thì tam giác ABC có góc C=2góc B17 Tháng mười hai 2013#2 nhuquynhdatGuest
bài 2
a) AB//CD => AB//CE(1)
Xét tam giác ADE có AH là đg` cao
lại có E đối xứng với D qua H => H là trung điểm của DE => AH là trung tuyến
=> tam giác ADE cân tại A
=> ADE=AED(goác đáy tam giác cân)
mặt khác ABCD là hình thang cân => ADC=góc C
=> góc C= AED
mà 2 góc này ở vị trí đồng vị của AE và BC => AE//BC(2)
từ (1)và (2) => ABCE là hbh
b) xét tam giác AHE và tam giác FHD có góc AHE=góc DHF(đối đỉnh)
DH=HE(gt)
AE//DF(gt)=> AEH=FDH(SLT)
=>tam giác AHE=tam giác FHD(gcg) => AH=HF => H là TĐ của AF
c) Ta có AH=HF(câu b)DH=HE(gt) => ADFE là hbh
mà AH vg góc với ED=> AF vg góc với ED => ADEF là hình thoi
lại có tam giác ADE cân tại A (câu a)=> AD=AE => ADEF là hình vg
a, Do I là trung điểm của DC
suy ra: IC=1/2DC
Mà AB=1/2DC nên AB=CI(*)
Ta có: AB//CD
MÀ I nằm trên cạnh DC
suy ra AB//IC(**)
Từ (*);(**) suy ra tứ giác ABCI là hình bình hành
b, Chứng minh tương tự ta cũng có tứ giác ABID là hình bình hành.
c, Chứng minh tam giác bằng nhau suy ra IA=IC còn cách còn lại bạn tự làm nha dễ đấy
bạn làm hộ mik lốt câu c đi.Mik chứng minh đc IA=IC rồi nhưng không biết làm gì nữa
a) MN là đường trung bình của tam giác HDC nên MN = \(\frac{1}{2}CD\)và \(MN//CD\)
Mà \(AB//CD\)và AB =\(\frac{1}{2}CD\)nên \(AB//MN\)và AB = MN
Suy ra ABMN là hình bình hành
b) Vì \(MN//CD\)và \(AD\perp CD\)nên \(AD\perp MN\)
Suy ra N là trực tâm của tam giác AMD
d) CD = 16 nên AB = 8
Suy ra \(S_{ABCD}=\frac{\left(16+8\right).6}{2}=72\left(cm^2\right)\)
c) \(\widehat{NAB}=\widehat{NMB}\)(hai góc đối)
\(\Rightarrow NBM+NDM=NAB+DAC=90^0=BMD\)
Bài 22 :
Vì ABCD là hình bình hành
=> AB = DC
Mà M là trung điểm AB
=> AM = MB
Mà N là trung điểm DC
=> DN = NC
=> AM = DN
Mà AB//DC
=> DN//AM
=> AMND là hình bình hành
Chứng minh tương tự ta có : MBCN là hình bình hành
Bài 1:
Xét ΔABC có
M là trung điểm của BC
ME//AC
Do đó: E là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
MF//AB
DO đó: F là trung điểm của AC
Xét ΔABC có
E là trung điểm của AB
F là trung điểm của AC
Do đó: EF là đường trung bình
=>EF//BC
hay BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân
Câu 3:
a: Xét ΔABC có
M là trung điểm của BA
N la trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của DC
Do đó: QP là đường trug bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Xét tứ giác MDPB có
MB//DP
MB=DP
Do đó: MDPB là hình bình hành
c: Xét ΔCDK có
P là trung điểm của CD
PL//DK
DO đó:L là trung điểm của CK
=>CL=LK(1)
Xét ΔALB có
Mlà trung điểm của AB
MK//LB
Do đó:K là trung điểm của AL
=>AK=KL(2)
Từ (1) và (2) suy ra AK=KL=LC
Ta có : S = a.h
Khi đó ta có: S = 4.2 = 8 c m 2 .
Chọn đáp án B.