Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ADB\):
\(AE=EB\left(gt\right)\)
\(HD=HA\left(gt\right)\)
\(\Rightarrow HE\)là đường trung binh cũa \(\Delta ADB\).
\(\Rightarrow HE\)//\(DB\)và \(HE=\frac{1}{2}DB\left(1\right)\)
Xét \(\Delta CDB:\)
\(FB=FC\left(gt\right)\)
\(GC=GD\left(gt\right)\)
\(\Rightarrow GF\) là dường trung bình của \(\Delta CBD\).
\(\Rightarrow GF\)//\(DB\)và \(GF=\frac{1}{2}DB\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\Rightarrow\)\(HE\)//\(GF\)và \(HE=GF\)
Vậy tứ giác \(EFGH\)là hình bình hành.
b) Xét \(\Delta AEH\)và \(\Delta EBF\):
\(AE=EB\left(gt\right)\)
Góc A = Góc B = 90o (ABCD là hình chữ nhật)
\(AD=BC\Rightarrow\frac{1}{2}AD=\frac{1}{2}BC\Rightarrow AH=BF\)
\(\Rightarrow\Delta AEH=\Delta EBF\left(c.g.c\right)\)
\(\Rightarrow HE=HF\)
mà tứ giác EFGH là hình bình hành.
Vậy hình bình hành \(EFGH\)là hình thoi.
Ta có: ∠ (AOB) = ∠ (COD) (đối đỉnh)
∠ (EOB ) = 1/2 ∠ (AOB) (gt)
∠ (COG) = 1/2 ∠ (COD) (gt)
Suy ra: ∠ (EOB ) = ∠ (COG)
∠ (EOB) + ∠ (BOC) + ∠ (COG) = 2 ∠ (EOB) + ∠ (BOC)
Mà ∠ (AOB ) + ∠ (BOC) = 180 0 ( kề bù).Hay 2 ∠ (EOB) + ∠ (BOC ) = 180 0
Suy ra: E,O,G thẳng hàng
Ta lại có: ∠ (BOC) = ∠ (AOD ) ( đối đỉnh)
∠ (HOD) = 1/2 ∠ (AOD) (gt)
∠ (FOC) = 1/2 ∠ (BOC) (gt)
Suy ra: ∠ (HOD) = ∠ (FOC)
∠ (HOD) + ∠ (COD ) + ∠ (FOC) = 2 ∠ (HOD) + ∠ (COD)
Mà ∠ (AOD) + ∠ (COD) = 180 0 ( kề bù). Hay 2 ∠ (HOD) + ∠ (COD) = 180 0
Suy ra: H, O, F thẳng hàng
∠ (ADO) = ∠ (CBO) ( so le trong)
∠ (HDO) = ∠ (FBO) ( chứng minh trên)
OD = OB ( t/chất hình bình hành)
∠ (HOD) = ∠ (FOB ) ( đối đỉnh)
Do đó: ∆ BFO = ∆ DHO (g.c.g)
⇒ OF = OH
∠ (OAB) = ∠ (OCD) ( so le trong)
∠ (OAE) = 1/2 ∠ (OAB ) (gt)
∠ (OCG) = 1/2 ∠ (OCD) (gt)
Suy ra: ∠ (OAE) = ∠ (OCG)
Xét ∆ OAE và ∆ OCG,ta có :
∠ (OAE) = ∠ (OCG) ( chứng mình trên)
OA = OC ( t/chất hình bình hành)
∠ (EOA) = ∠ (GOC) ( đối đỉnh)
Do đó: ∆ OAE= ∆ OCG (g.c.g) ⇒ OE = OG
Suy ra tứ giác EFGH là hình bình hành ( vì có 2 đường chéo cắt nhau tại trung điểm của mỗi đường)
OE ⊥ OF (tính chất tia phân giác của hai góc kề bù) hay EG ⊥ FH
Vậy tứ giác EFGH là hình thoi
AE//CG, AE = CG nên AECG là hình bình hành ⇒ O là trung điểm của EG. Tương tự O là trung điểm của HF.
a) Xét ΔABC có
E là trung điểm của AB(gt)
F là trung điểm của BC(gt)
Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)
⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)
Xét ΔADC có
H là trung điểm của AD(gt)
G là trung điểm của CD(gt)
Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)
⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)
Từ (1) và (2) suy ra HG//EF và HG=EF
Xét ΔABD có
E là trung điểm của AB(gt)
H là trung điểm của AD(gt)
Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)
⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)
Ta có: EH//BD(cmt)
BD⊥AC(gt)
Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)
Ta có: HG//AC(cmt)
EH⊥AC(Cmt)
Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)
hay \(\widehat{EHG}=90^0\)
Xét tứ giác EHGF có
HG//EF(cmt)
HG=FE(cmt)
Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)
nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: EFGH là hình chữ nhật(cmt)
nên \(S_{EFGH}=EF\cdot EH\)
\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)
Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2
c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG
hay AC=BD
Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông