K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Áp dụng hệ thức liên quan tới đường cao ta có:

 +)  \(2^2=x\cdot x\)

=>\(x=2\)

 +) \(\frac{1}{y^2}+\frac{1}{y^2}=\frac{1}{2^2}\)

=> \(\frac{2}{y^2}=\frac{1}{4}\)

=> \(y^2=8\)

=>\(y=\sqrt{8}\)

 

2 tháng 9 2016

Mình đặt tên cho dễ nha. \(\Delta\)ABC vuông tại A có AH là đường cao 

Áp dụng hệ thức lượng, ta có: AH2=HB.HC

                                              22 =x.x=x2

                                         => x=2

\(\Delta\)AHB vuông tại H, áp dụng định lý Py-ta-go, ta có:

                       AH2+HB2=AB2

                        22+22=AB2

=>                  y=       AB=2\(\sqrt{ }\)2

a: Xét (O) có 

ΔABC nội tiếp đường tròn

AB là đường kính

Do đó: ΔABC vuông tại C

lớp 9 ? mà ko làm dc bài này ?

\(x^2+2.14+196-128-196=0.\)

\(\left(x+14\right)^2-324=0\)

\(\left(x+14\right)^2-18^2=0\)

\(\hept{\begin{cases}\left(x+14+18\right)=0\\\left(x+14-18\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-14-18\\x=-14+18\end{cases}}\)

5 tháng 8 2018

tôi năm nay ms lên lên lớp 9 chưa hk dạng này

12 tháng 7 2023

a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2

\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)

b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10

Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm

c/ ĐKXĐ: x - 5 >=0 <=> x >= 5

\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

12 tháng 7 2023

a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\left(tm\right)\)

b) \(\sqrt{x-10}=-2\) 

⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm

c) \(\sqrt{\left(x-5\right)^2}=3\) 

\(\Leftrightarrow\left|x-5\right|=3\)

TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)

Pt trở thành:

\(x-5=3\) (ĐK: \(x\ge5\))

\(\Leftrightarrow x=3+5\)

\(\Leftrightarrow x=8\left(tm\right)\)

TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)

Pt trở thành:

\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))

\(\Leftrightarrow-x+5=3\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(S=\left\{2;8\right\}\)

7 tháng 9 2020

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\left(đk:x\ge1\right)\)

\(< =>\sqrt{x-2\sqrt{x-1}}^2=\left(\sqrt{x-1}-1\right)^2\)

\(< =>x-2\sqrt{x-1}=x-1+1-2\sqrt{x-1}\)

\(< =>x-2\sqrt{x-1}+2\sqrt{x-1}=x< =>x=x\)

Vậy phương trình trên thỏa mãn với mọi \(x\ge1\)

7 tháng 9 2020

ĐKXĐ : \(x\ge1\)

Bình phương 2 vế lên ta có :

\(x-2\sqrt{x-1}=\left(\sqrt{x-1}-1\right)^2\)

\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)

\(\Leftrightarrow x-2\sqrt{x-1}=x-2\sqrt{x-1}\)

\(\Leftrightarrow0x=0\)( luôn đúng với mọi \(x\ge1\))

Vậy ...............

a) Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{3\sqrt{a}}{\sqrt{a}-1}-\dfrac{\sqrt{a}+2}{\sqrt{a}+1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\sqrt{a}\left(\sqrt{a}+1\right)}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{3\sqrt{a}\left(\sqrt{a}+1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{3a+3\sqrt{a}-\left(a-\sqrt{a}+2\sqrt{a}-2\right)}{\sqrt{a}}\)

\(=2+\dfrac{3a+3\sqrt{a}-a+\sqrt{a}-2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\sqrt{a}+2a+2\sqrt{a}+2}{\sqrt{a}}\)

\(=\dfrac{2\left(a+2\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\dfrac{2\left(\sqrt{a}+1\right)^2}{\sqrt{a}}\)

b) Ta có: \(P-6=\dfrac{2\left(\sqrt{a}+1\right)^2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2a+4\sqrt{a}+2-6\sqrt{a}}{\sqrt{a}}\)

\(=\dfrac{2\left(a-\sqrt{a}+1\right)}{\sqrt{a}}>0\forall a\) thỏa mãn ĐKXĐ

hay P>6

5 tháng 7 2023

Theo đề có:

\(\dfrac{HD}{BH}=\dfrac{AD^2}{AB^2}=\dfrac{4^2}{6^2}=\dfrac{4}{9}\)

Tam giác HDC ∼ tam giác HBA nên: 

\(\dfrac{DC}{AB}=\dfrac{HD}{BH}=\dfrac{4}{9}\Rightarrow DC=AB.\dfrac{4}{9}=6.\dfrac{4}{9}=\dfrac{8}{3}\left(cm\right)\)

Từ C kẻ CK là đường cao của tam giác ABC có: \(KB=AB-DC=6-\dfrac{8}{3}=\dfrac{10}{3}\left(cm\right)\)

\(\Rightarrow BC=\dfrac{\sqrt{244}}{3}=\dfrac{2\sqrt{61}}{3}\left(cm\right)\)

Xét tam giác vuông ABD có \(BD=\sqrt{AB^2+AD^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

27 tháng 7 2016

a, \(P=\left(x^4-8x^3+16x^2\right)+12x^2-48x+35\)

\(=\left(x^2-4x\right)^2+12\left(x^2-4x\right)+36-1\)

\(=\left(x^2-4x+6\right)^2-1\)

\(=\left[\left(x-2\right)^2+2\right]^2-1\)

\(\ge2^2-1=3\)

Cách khác \(P=\left(x-2\right)^2\left[\left(x-2\right)^2+4\right]+3\ge3\)

Đẳng thức xảy ra khi \(x=2.\)

b, \(xy\le\frac{\left(x+y\right)^2}{4}=9\)

Áp dụng bđt Co6si: \(\frac{1}{x^2}+\frac{1}{y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{y^2}}=\frac{2}{xy}\)

\(Q\ge\frac{102}{xy}+xy=xy+\frac{81}{xy}+\frac{21}{xy}\ge2\sqrt{xy.\frac{81}{xy}}+\frac{21}{9}=\frac{61}{3}.\)

Dấu bằng xảy ra khi \(x=y=3.\)

28 tháng 7 2016

Mk camon bn nhiều nha =))