Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCAB có CN/CA=CP/CB
nên NP//AB và NP=AB/2
=>NP//BM và NP=BM
=>NPBM là hình bình hành
b: Xét tứ giác AMPN có
PN//AM
PN=AM
góc MAN=90 độ
Do đó: AMPN là hình chữ nhật
c: Xét ΔAPR co
AM vừa là đường cao, vừa là trung tuyến
nên ΔAPR cân tại A
=>AB là phân giác của góc PAR(1)
Xét ΔAPQ có
AC vừa là đường cao, vừa là trung tuyến
nên ΔAPQ cân tại A
=>AC là phân giác của góc PAQ(2)
Từ (1), (2) suy ra góc RAQ=2*90=180 độ
=>R,A,Q thẳng hàng
Em thử nhé, ko chắc đâu
a) \(B=\frac{n^3+2n^2+2n+1}{n^3+2n^2+2n+1}-\frac{2n+2}{n^3+2n^2+2n+1}=1-\frac{2\left(n+1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=1-\frac{2}{n^2+n+1}=\frac{n^2+n-1}{n^2+n+1}\)
b) Đặt (n2+n-1 ; n2+n+1) = d
Thì \(\left\{{}\begin{matrix}n^2+n-1⋮d\\n^2+n+1⋮d\end{matrix}\right.\Rightarrow2⋮d\)
Dễ thấy d khác 2 vì n2+n-1 ; n2+n+1 luôn là số lẻ với mọi n thuộc Z.
Do đó d = 1 hay phân số rút gọn luôn tối giản
\(B=\frac{n^3+2n^2-1}{n^3+2n^2+2n+1}=\frac{\left(n^3+n^2\right)+\left(n^2-1\right)}{\left(n^3+n^2\right)+\left(n^2+n\right)+\left(n+1\right)}=\frac{n^2\left(n+1\right)+\left(n+1\right)\left(n-1\right)}{n^2\left(n+1\right)+n\left(n+1\right)+\left(n+1\right)}=\frac{\left(n+1\right)\left(n^2+n-1\right)}{\left(n+1\right)\left(n^2+n+1\right)}=\frac{n^2+n-1}{n^2+n+1}\)
\(Gọi:d=\left(n^2+n+1,n^2+n-1\right)\Rightarrow n^2+n+1-\left(n^2+n-1\right)⋮d\Leftrightarrow n^2-n^2+n-n+1+1⋮d\Leftrightarrow2⋮d\Leftrightarrow d\in\left\{1;2\right\}\)
\(n^2+n+1=n\left(n+1\right)+1\)n và n+1 là 2 so tự nhiên liên tiếp => có 1 so chan trong 2 so n và n+1 \(\Rightarrow n\left(n+1\right)chan\Rightarrow n\left(n+1\right)+14le\Rightarrow n^2+n+1\text{ }le\Rightarrow d\text{ }le\Rightarrow d=1\Rightarrow\forall n\in Z\text{ thì phân so rút gọn toi gian}\)
BMNP mới là HBH chứ bạn ơi
a, Ta có: MN là đường trung bình của tam giác BAC, nên MN // =(1/2) BC và //= BP
PN là đường trung bình của tam giác BCA nên PN // =(1/2) AB và //= BM
Tứ giác BMNP có BM //PN, BP // MN => MNPB là HBH
Ta có:
Cả 3 đáp án A, B, C đều sai.
Chọn đáp án D.