K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

- Xét tam giác ABD và tam giác ACE có \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\), góc A chung

=> ΔABD ∽ ΔACE (g.g)

- Vì ΔABD ∽ ΔACE 

=> \(\widehat {A{\rm{D}}B} = \widehat {A{\rm{E}}C}\)

=> \(\widehat {C{\rm{D}}O} = \widehat {BEO}\) (1)

- Có \(\widehat {AB{\rm{D}}} = \widehat {AC{\rm{E}}}\)

Mà \(\widehat {AB{\rm{D}}} + \widehat {EBO} = {180^o}\)

      \(\widehat {AC{\rm{E}}} + \widehat {DCO} = {180^o}\)

=> \(\widehat {EBO} = \widehat {DCO}\) (2)

Từ (1) và (2) => ΔBOE ∽ ΔCOD (g.g)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Xét hai tam giác AEB và DEC có:

\(\widehat {BAC} = \widehat {C{\rm{D}}B}\)(giả thiết)

\(\widehat {AEB} = \widehat {DEC}\) (đối đỉnh)

Suy ra \(\Delta A{\rm{E}}B \backsim \Delta DEC\) suy ra: \(\frac{{A{\rm{E}}}}{{DE}} = \frac{{BE}}{{CE}} \Rightarrow \frac{{A{\rm{E}}}}{{BE}} = \frac{{DE}}{{CF}}\)

Xét hai tam giác AED và BEC có:

\(\widehat {A{\rm{ED}}} = \widehat {BEC}\) (đối đỉnh)

\(\frac{{A{\rm{E}}}}{{BE}} = \frac{{DE}}{{CF}}\)

Suy ra ΔAED ∽ ΔBEC (g – c – g)

HQ
Hà Quang Minh
Giáo viên
10 tháng 9 2023

Xét tam giác ABC và tam giác ADB có 

\(\widehat {ABC} = \widehat {A{\rm{D}}B}\) và \(\widehat A\) chung

=> ΔABC ∽ ΔADB (g.g)

=> \(\frac{{AB}}{{AD}} = \frac{{AC}}{{AB}}\)

=> \(A{B^2} = A{\rm{D}}.AC\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Xét \(\Delta ABD\)có: \(\widehat {BAD} + \widehat {ABD} + \widehat {BDA} = {180^0}\)

Xét \(\Delta BCD\)có: \(\widehat {BCD} + \widehat {BDC} + \widehat {DBC} = {180^0}\)

\(\begin{array}{l} \Rightarrow \widehat {BAD} + \widehat {ABD} + \widehat {BDA} = \widehat {BCD} + \widehat {BDC} + \widehat {DBC}\\ \Rightarrow \widehat {DAB} = \widehat {DBC}(do\,\widehat {BAD} = \widehat {BCD};\widehat {ABD} = \widehat {BDC})\end{array}\)

Xét \(\Delta ABD\) và \(\Delta CDB\) có:

\(\begin{array}{l}\left. \begin{array}{l}\widehat {ABD} = \widehat {CDB}\\BDchung\\\widehat {DBA} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta ABD = \Delta CDB(g.c.g)\\ \Rightarrow AB = DC\\AD = CB\end{array}\)

Suy ra tứ giác ABCD là hình bình hành vì có cặp cạnh đối bằng nhau

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

a, Tứ giác ABCD có:

\(\widehat {ABC} + \widehat {BCD} + \widehat {CDA} + \widehat {DAB} = {360^0}\)

\(\widehat {ABC} + \widehat {DAB} + \widehat {ABC} + \widehat {DAB} = {360^0}\)(do \(\widehat {DAB} = \widehat {BCD};\widehat {ABC} = \widehat {CDA}\))

\(\begin{array}{l}2\widehat {ABC} + 2\widehat {DAB} = {360^0}\\\widehat {ABC} + \widehat {DAB} = \dfrac{{{{360}^0}}}{2} = {180^0}\end{array}\)

b, Ta có: \(\widehat {xAD} + \widehat {DAB} = {180^0}\)(do tia Ax là tia đối của tia AB)

Nên

 \(\begin{array}{l}\widehat {xAD} + \widehat {DAB} = \widehat {ABC} + \widehat {DAB}\\ \Rightarrow \widehat {xAD} = \widehat {ABC}\end{array}\)

Suy ra AD//BC (hai góc đồng vị bằng nhau)

c, Vì AD//BC \( \Rightarrow \widehat {ADB} = \widehat {DBC}\) (2 góc so le trong)

Xét \(\Delta A{\rm{D}}B\) có \(\widehat {ABD} = {180^0} - \widehat {ADB} - \widehat {DAB} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 1 \right)\)

( vì \(\widehat {ADB} = \widehat {DBC};\widehat {DAB} = \widehat {BCD})\)

Xét \(\Delta CDB\) có: \(\widehat {BDC} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 2 \right)\)

Từ (1), (2) suy ra \(\widehat {ABD} =\widehat {BDC}\)

Xét \(\Delta ADB\) và \(\Delta BCD\)có:

\(\left. \begin{array}{l}DBchung\\\widehat {ABD} = \widehat {BDC}\\\widehat {ABD} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta A{\rm{D}}B = \Delta C{\rm{D}}B \Rightarrow A{\rm{D}} = BC,AB = CB\)

Suy ra tứ giác ABCD có cặp cạnh đối bằng nhau nên ABCD là hình bình hành.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Sau khi đo, ta thấy bốn góc \(\widehat {\rm{A}}\), \(\widehat {\rm{B}}\), \(\widehat {\rm{C}}\), \(\widehat {\rm{D}}\) có số đo bằng nhau và bằng \(90^\circ \)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Sau khi đo góc ta thấy cặp góc \(\widehat {{A_1}}\) và \(\widehat {\rm{D}}\), \(\widehat {{{\rm{C}}_{\rm{1}}}}\) và \(\widehat {\rm{D}}\) bằng nhau

Mà các góc ở vị trí đồng vị

Suy ra: \(AB\) // \(CD\); \(AD\) // \(BC\)

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Do ABCD là hình thang nên AB//CD.

Kẻ BE//AC, \(E \in CD\) nên CE//AB.

\( \Rightarrow \widehat {BCE} = \widehat {ABC}\); \(\widehat {CBE} = \widehat {ACB}\) (hai góc so le trong).

a, Xét \(\Delta ABC\)và \(\Delta ECB\) có:

\(\widehat {BCE} = \widehat {ABC}\)

BC chung

\(\widehat {CBE} = \widehat {ACB}\) (do BC//AC )

\( \Rightarrow \Delta ABC = \Delta ECB\)(g.c.g)

b, BE = AC = BD

\( \Rightarrow \Delta BDE\)cân tại B

\( \Rightarrow \widehat {BDE} = \widehat {BED}\)

Do \(\Delta ABC = \Delta ECB\)

\( \Rightarrow \widehat {BEC} = \widehat {BAC}\) (2 góc tương ứng) hay \(\widehat {BED} = \widehat {BAC}(1)\)

Mà: \(\widehat {BAC} = \widehat {ACD}\) (do AB//CD)  (2)

Từ (1), (2) suy ra: \(\widehat {BED} = \widehat {ACD}\)

c, Theo câu b:

 \(\begin{array}{l}\widehat {BED} = \widehat {BDE}\\\widehat {ACD} = \widehat {BED}\end{array}\) suy ra: \(\widehat {ACD} = \widehat {BDE}\) hay \(\widehat {ACD} = \widehat {BDC}\)

Xét \(\Delta ACD\)và \(\Delta BDC\)có:

CD chung

\(\widehat {ACD} = \widehat {BDC}\)

AC = BD (gt)

\( \Rightarrow \Delta ACD = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {ADC} = \widehat {BCD}\) (2 góc tương ứng)

d,  Hình thang ABCD (AB//CD) có \(\widehat {ADC} = \widehat {BCD}\)nên hình thang ABCD là hình thang cân.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\), \(BD\)

\(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\)

Nếu \(\widehat {{\rm{BAD}}} = 90^\circ \) suy ra \(AB \bot AD\)

Mà \(AB\) // \(CD\); \(AD\) // \(BC\)

Suy ra \(AD \bot CD;\;AB \bot BC\)

Suy ra \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)

b) Xét \(\Delta BAD\) và \(\Delta CDA\) ta có:

\(BA = CD\) (gt)

\(AD\) chung

\(BD = AC\) (gt)

Suy ra \(\Delta BAD = \Delta CDA\) (c-c-c)

Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{CDA}}}\) (hai góc tương ứng)

Mà  \(\widehat {BAD} + \widehat {CDA} = 180^\circ \)(do \(AB\) // \(CD\) , cặp góc trong cùng phía)

Suy ra \(\widehat {BAD} = \widehat {CDA} = 90^\circ \)