K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Sau khi đo góc ta thấy cặp góc \(\widehat {{A_1}}\) và \(\widehat {\rm{D}}\), \(\widehat {{{\rm{C}}_{\rm{1}}}}\) và \(\widehat {\rm{D}}\) bằng nhau

Mà các góc ở vị trí đồng vị

Suy ra: \(AB\) // \(CD\); \(AD\) // \(BC\)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Sau khi đo, ta thấy bốn góc \(\widehat {\rm{A}}\), \(\widehat {\rm{B}}\), \(\widehat {\rm{C}}\), \(\widehat {\rm{D}}\) có số đo bằng nhau và bằng \(90^\circ \)

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Vì \(ABCD\) là hình bình hành (gt)

Suy ra \(O\) là trung điểm của \(AC\), \(BD\)

\(AB = CD\); \(AD = BC\); \(AB\) // \(CD\); \(AD\) // \(BC\)

Nếu \(\widehat {{\rm{BAD}}} = 90^\circ \) suy ra \(AB \bot AD\)

Mà \(AB\) // \(CD\); \(AD\) // \(BC\)

Suy ra \(AD \bot CD;\;AB \bot BC\)

Suy ra \(\widehat {ADC} = \widehat {ABC} = 90^\circ \)

b) Xét \(\Delta BAD\) và \(\Delta CDA\) ta có:

\(BA = CD\) (gt)

\(AD\) chung

\(BD = AC\) (gt)

Suy ra \(\Delta BAD = \Delta CDA\) (c-c-c)

Suy ra \(\widehat {{\rm{BAD}}} = \widehat {{\rm{CDA}}}\) (hai góc tương ứng)

Mà  \(\widehat {BAD} + \widehat {CDA} = 180^\circ \)(do \(AB\) // \(CD\) , cặp góc trong cùng phía)

Suy ra \(\widehat {BAD} = \widehat {CDA} = 90^\circ \)

22 tháng 7 2023

Vì ABCD là hình thang cân 

\(\Rightarrow\widehat{A}+\widehat{D}=180^o\)

Nên: \(\widehat{D}=180^o-\widehat{A}=180^o-65^o=115^o\)

Mặt khác ta có ABCD là hình thang cân nên: 

\(\widehat{C}=\widehat{D}=115^o\)

Vậy chọn đáp án A

Chọn A

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

Trong tứ giác \(ABCD\) có: \(\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC} = 360^\circ \)

Ta có:

\(\widehat {{A_1}} + \widehat {{B_1}} + \widehat {{C_1}} + \widehat {{D_1}}\\\)

\(= \left( {180^\circ  - \widehat {DAB}} \right) + \left( {180^\circ  - \widehat {ABC}} \right) + \left( {180^\circ  - \widehat {BCD}} \right) + \left( {180^\circ  - \widehat {ADC}} \right)\\\)

\(= 180^\circ  + 180^\circ  + 180^\circ  + 180^\circ  - \left( {\widehat {DAB} + \widehat {ABC} + \widehat {BCD} + \widehat {ADC}} \right)\\ \)

\(= 720^\circ  - 360^\circ \\\)

\(= 360^\circ \)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a)  Ta có: \(\Delta ABC\backsim\Delta A'B'C'\) thì \(\left\{ \begin{array}{l}\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\\\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = k\end{array} \right.\).

b) Xét tam giác \(DEF\) có:

\(\widehat D + \widehat E + \widehat F = 180^\circ \) (tổng ba góc trong một tam giác).

Ta có: \(\widehat D = 78^\circ ;\widehat E = 57^\circ \) thay số ta được

\(78^\circ  + 57^\circ  + \widehat F = 180^\circ  \Rightarrow \widehat F = 180^\circ  - 78^\circ  - 57^\circ  = 45^\circ \)

Ta có: \(\Delta DEF\backsim\Delta D'E'F' \Rightarrow \widehat D = \widehat {D'};\widehat E = \widehat {E'};\widehat F = \widehat {F'}\) (các góc tương ứng bằng nhau)

Do đó,  \(\widehat D = \widehat {D'} = 78^\circ ;\widehat F = \widehat {F'} = 45^\circ \).

c) Ta có  \(\Delta MNP\backsim\Delta M'N'P' \Rightarrow \frac{{MN}}{{M'N'}} = \frac{{MP}}{{M'P'}} = \frac{{NP}}{{N'P'}}\) (các cặp cạnh tương ứng có cùng tỉ lệ).

Với \(MP = 10;NP = 6;M'N' = 15;N'P' = 12\) thay vào ta được:

\( \Rightarrow \left\{ \begin{array}{l}\frac{{MN}}{{15}} = \frac{1}{2}\\\frac{{10}}{{M'P'}} = \frac{1}{2}\end{array} \right. \Rightarrow \left\{ \begin{array}{l}MN = \frac{{15.1}}{2} = 7,5\\M'P' = \frac{{10.2}}{1} = 20\end{array} \right.\).

Vậy \(MN = 7,5;M'P' = 20\).

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Xét \(\Delta ABD\)có: \(\widehat {BAD} + \widehat {ABD} + \widehat {BDA} = {180^0}\)

Xét \(\Delta BCD\)có: \(\widehat {BCD} + \widehat {BDC} + \widehat {DBC} = {180^0}\)

\(\begin{array}{l} \Rightarrow \widehat {BAD} + \widehat {ABD} + \widehat {BDA} = \widehat {BCD} + \widehat {BDC} + \widehat {DBC}\\ \Rightarrow \widehat {DAB} = \widehat {DBC}(do\,\widehat {BAD} = \widehat {BCD};\widehat {ABD} = \widehat {BDC})\end{array}\)

Xét \(\Delta ABD\) và \(\Delta CDB\) có:

\(\begin{array}{l}\left. \begin{array}{l}\widehat {ABD} = \widehat {CDB}\\BDchung\\\widehat {DBA} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta ABD = \Delta CDB(g.c.g)\\ \Rightarrow AB = DC\\AD = CB\end{array}\)

Suy ra tứ giác ABCD là hình bình hành vì có cặp cạnh đối bằng nhau

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

a, Tứ giác ABCD có:

\(\widehat {ABC} + \widehat {BCD} + \widehat {CDA} + \widehat {DAB} = {360^0}\)

\(\widehat {ABC} + \widehat {DAB} + \widehat {ABC} + \widehat {DAB} = {360^0}\)(do \(\widehat {DAB} = \widehat {BCD};\widehat {ABC} = \widehat {CDA}\))

\(\begin{array}{l}2\widehat {ABC} + 2\widehat {DAB} = {360^0}\\\widehat {ABC} + \widehat {DAB} = \dfrac{{{{360}^0}}}{2} = {180^0}\end{array}\)

b, Ta có: \(\widehat {xAD} + \widehat {DAB} = {180^0}\)(do tia Ax là tia đối của tia AB)

Nên

 \(\begin{array}{l}\widehat {xAD} + \widehat {DAB} = \widehat {ABC} + \widehat {DAB}\\ \Rightarrow \widehat {xAD} = \widehat {ABC}\end{array}\)

Suy ra AD//BC (hai góc đồng vị bằng nhau)

c, Vì AD//BC \( \Rightarrow \widehat {ADB} = \widehat {DBC}\) (2 góc so le trong)

Xét \(\Delta A{\rm{D}}B\) có \(\widehat {ABD} = {180^0} - \widehat {ADB} - \widehat {DAB} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 1 \right)\)

( vì \(\widehat {ADB} = \widehat {DBC};\widehat {DAB} = \widehat {BCD})\)

Xét \(\Delta CDB\) có: \(\widehat {BDC} = {180^0} - \widehat {DBC} - \widehat {BCD}\left( 2 \right)\)

Từ (1), (2) suy ra \(\widehat {ABD} =\widehat {BDC}\)

Xét \(\Delta ADB\) và \(\Delta BCD\)có:

\(\left. \begin{array}{l}DBchung\\\widehat {ABD} = \widehat {BDC}\\\widehat {ABD} = \widehat {DBC}\end{array} \right\} \Rightarrow \Delta A{\rm{D}}B = \Delta C{\rm{D}}B \Rightarrow A{\rm{D}} = BC,AB = CB\)

Suy ra tứ giác ABCD có cặp cạnh đối bằng nhau nên ABCD là hình bình hành.

HQ
Hà Quang Minh
Giáo viên
11 tháng 1

Do ABCD là hình thang nên AB//CD.

Kẻ BE//AC, \(E \in CD\) nên CE//AB.

\( \Rightarrow \widehat {BCE} = \widehat {ABC}\); \(\widehat {CBE} = \widehat {ACB}\) (hai góc so le trong).

a, Xét \(\Delta ABC\)và \(\Delta ECB\) có:

\(\widehat {BCE} = \widehat {ABC}\)

BC chung

\(\widehat {CBE} = \widehat {ACB}\) (do BC//AC )

\( \Rightarrow \Delta ABC = \Delta ECB\)(g.c.g)

b, BE = AC = BD

\( \Rightarrow \Delta BDE\)cân tại B

\( \Rightarrow \widehat {BDE} = \widehat {BED}\)

Do \(\Delta ABC = \Delta ECB\)

\( \Rightarrow \widehat {BEC} = \widehat {BAC}\) (2 góc tương ứng) hay \(\widehat {BED} = \widehat {BAC}(1)\)

Mà: \(\widehat {BAC} = \widehat {ACD}\) (do AB//CD)  (2)

Từ (1), (2) suy ra: \(\widehat {BED} = \widehat {ACD}\)

c, Theo câu b:

 \(\begin{array}{l}\widehat {BED} = \widehat {BDE}\\\widehat {ACD} = \widehat {BED}\end{array}\) suy ra: \(\widehat {ACD} = \widehat {BDE}\) hay \(\widehat {ACD} = \widehat {BDC}\)

Xét \(\Delta ACD\)và \(\Delta BDC\)có:

CD chung

\(\widehat {ACD} = \widehat {BDC}\)

AC = BD (gt)

\( \Rightarrow \Delta ACD = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {ADC} = \widehat {BCD}\) (2 góc tương ứng)

d,  Hình thang ABCD (AB//CD) có \(\widehat {ADC} = \widehat {BCD}\)nên hình thang ABCD là hình thang cân.